摘要翻译:
对于偏微分方程和常代数微分方程,我们给出了微分Nullstellensatz微分阶的第一个已知界。这个问题以前曾由A.Seidenberg处理过,但没有给出完整的解决方案。我们的结果是对代数几何中相应结果的补充,它给出了有效Nullstellensatz中多项式系数的次数的一个界。
---
英文标题:
《A Bound for Orders in Differential Nullstellensatz》
---
作者:
Oleg Golubitsky, Marina Kondratieva, Alexey Ovchinnikov, Agnes Szanto
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We give the first known bound for orders of differentiations in differential Nullstellensatz for both partial and ordinary algebraic differential equations. This problem was previously addressed by A. Seidenberg but no complete solution was given. Our result is a complement to the corresponding result in algebraic geometry, which gives a bound on degrees of polynomial coefficients in effective Nullstellensatz.
---
PDF链接:
https://arxiv.org/pdf/0803.0160


雷达卡



京公网安备 11010802022788号







