摘要翻译:
研究了A_n×P^1的相对Donaldson-Thomas理论,其中A_n是A_n型奇点的表面分辨率。该理论中除数算子的作用用Fock空间上仿射代数\Hat{gl}(n+1)的算子来表示。假设一个非简并猜想,这给出了理论的完整解。结果完成了该理论与A_n×P^1的Gromov-Witten理论以及A_n上点的Hilbert格式的量子上同调的比较。
---
英文标题:
《Donaldson-Thomas theory of A_n x P^1》
---
作者:
D. Maulik, A. Oblomkov
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
We study the relative Donaldson-Thomas theory of A_n x P^1, where A_n is the surface resolution of a type A_n singularity. The action of divisor operators in the theory is expressed in terms of operators of the affine algebra \hat{gl}(n+1) on Fock space. Assuming a nondegeneracy conjecture, this gives a complete solution for the theory. The results complete the comparison of this theory with the Gromov-Witten theory of A_n x P^1 and the quantum cohomology of the Hilbert scheme of points on A_n.
---
PDF链接:
https://arxiv.org/pdf/0802.2739


雷达卡



京公网安备 11010802022788号







