摘要翻译:
本文利用Skolem、Mahler和Lech的分析方法,结合非阿基米德动力学的Herman和Yoccoz的结果,证明了Mordell-Lang猜想在拟射影簇X的子簇中的一个动力学版本,它具有态射f:x->X的作用。
---
英文标题:
《Periodic points, linearizing maps, and the dynamical Mordell-Lang
problem》
---
作者:
Dragos Ghioca and Thomas J. Tucker
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove a dynamical version of the Mordell-Lang conjecture for subvarieties of quasiprojective varieties X, endowed with the action of a morphism f:X --> X. We use an analytic method based on the technique of Skolem, Mahler, and Lech, along with results of Herman and Yoccoz from nonarchimedean dynamics.
---
PDF链接:
https://arxiv.org/pdf/0805.1560


雷达卡



京公网安备 11010802022788号







