摘要翻译:
对于所有具有简单奇点的不可约平面性元$B\子集\P^2$,我们计算了基本群$\Pi=\Pi_1(P^2\set-b)$,其中$\Pi$允许一个二面体商$D_{10}$。所有发现的群都是有限的,其中两个是大序:960和21600。
---
英文标题:
《On irreducible sextics with non-abelian fundamental group》
---
作者:
Alex Degtyarev
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We calculate the fundamental groups $\pi=\pi_1(P^2\setminus B)$ for all irreducible plane sextics $B\subset\P^2$ with simple singularities for which $\pi$ is known to admit a dihedral quotient $D_{10}$. All groups found are shown to be finite, two of them being of large order: 960 and 21600.
---
PDF链接:
https://arxiv.org/pdf/0711.3070


雷达卡



京公网安备 11010802022788号







