摘要翻译:
利用有理函数域上构型诱导的sagbi基,将Cox-Nagata环退化为toric代数。对于del Pezzo曲面,这种退化意味着Batyrev-Popov猜想,即这些环是由二次曲面的理想表示的。对于射影n-空间在n+3点上的爆破,Cox-Nagata环的sagbi基在Verlinde公式和系统发生代数几何之间建立了联系,我们用它来回答D'Cruz-Iarobbino和Buczynska-Wisniewski提出的问题。受Holtz和Ron的zonotopal代数的启发,我们的研究强调显式计算,并提供了一种新的方法来求解胖点的Hilbert函数。
---
英文标题:
《Sagbi Bases of Cox-Nagata Rings》
---
作者:
Bernd Sturmfels and Zhiqiang Xu
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
We degenerate Cox-Nagata rings to toric algebras by means of sagbi bases induced by configurations over the rational function field. For del Pezzo surfaces, this degeneration implies the Batyrev-Popov conjecture that these rings are presented by ideals of quadrics. For the blow-up of projective n-space at n+3 points, sagbi bases of Cox-Nagata rings establish a link between the Verlinde formula and phylogenetic algebraic geometry, and we use this to answer questions due to D'Cruz-Iarobbino and Buczynska-Wisniewski. Inspired by the zonotopal algebras of Holtz and Ron, our study emphasizes explicit computations, and offers a new approach to Hilbert functions of fat points.
---
PDF链接:
https://arxiv.org/pdf/0803.0892


雷达卡



京公网安备 11010802022788号







