摘要翻译:
利用局域Fourier变换和Laumon固定相原理,确定了Kloosterman鞘在0和$infty$处的算术局域单模态。然后我们计算Kloosterman束的对称乘积的$\epsilon$-因子。利用Laumon乘积公式,得到了这些对称乘积的$L$-函数的函数方程,并证明了Evans关于函数方程常数符号的一个猜想。
---
英文标题:
《Functional Equations of $L$-Functions for Symmetric Products of the
Kloosterman Sheaf》
---
作者:
Lei Fu and Daqing Wan
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We determine the (arithmetic) local monodromy at 0 and at $\infty$ of the Kloosterman sheaf using local Fourier transformations and Laumon's stationary phase principle. We then calculate $\epsilon$-factors for symmetric products of the Kloosterman sheaf. Using Laumon's product formula, we get functional equations of $L$-functions for these symmetric products, and prove a conjecture of Evans on signs of constants of functional equations.
---
PDF链接:
https://arxiv.org/pdf/0812.4994


雷达卡



京公网安备 11010802022788号







