摘要翻译:
机器学习的两个主要目标是发现和改进复杂问题的解决方案。在本文中,我们认为复杂化,即通过增加新的结构来增加解决方案的精化,实现了这两个目标。我们通过神经进化增广拓扑(NEAT)方法证明了复杂性的力量,该方法进化出越来越复杂的神经网络结构。NEAT被应用于一个开放的协同进化机器人决斗领域,其中机器人控制器面对面竞争。因为机器人决斗领域支持广泛的策略,也因为协同进化从不断升级的军备竞赛中受益,所以它是研究复杂性的一个合适的实验平台。与固定结构的网络演化相比,复杂演化发现了更复杂的策略。结果表明,为了发现和改进复杂的解,进化和一般的搜索应该允许复杂和优化。
---
英文标题:
《Competitive Coevolution through Evolutionary Complexification》
---
作者:
R. Miikkulainen, K. O. Stanley
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
Two major goals in machine learning are the discovery and improvement of solutions to complex problems. In this paper, we argue that complexification, i.e. the incremental elaboration of solutions through adding new structure, achieves both these goals. We demonstrate the power of complexification through the NeuroEvolution of Augmenting Topologies (NEAT) method, which evolves increasingly complex neural network architectures. NEAT is applied to an open-ended coevolutionary robot duel domain where robot controllers compete head to head. Because the robot duel domain supports a wide range of strategies, and because coevolution benefits from an escalating arms race, it serves as a suitable testbed for studying complexification. When compared to the evolution of networks with fixed structure, complexifying evolution discovers significantly more sophisticated strategies. The results suggest that in order to discover and improve complex solutions, evolution, and search in general, should be allowed to complexify as well as optimize.
---
PDF链接:
https://arxiv.org/pdf/1107.0037


雷达卡



京公网安备 11010802022788号







