楼主: 何人来此
450 0

[统计数据] 关于Kert'esz线:一些严格的界 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
64.7412
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24593 点
帖子
4128
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-11 17:03:30 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
我们研究了在外加磁场$H$存在下,在(逆)温度$\beta$下,$q$-态Potts模型的Kert\'esz线。根据模型的Fortuin-Kasteleyn表示中是否存在无限团簇,这条线将相图的两个区域分开。当Q$足够大时,Kert\'esz线$H_k(\beta)$与小场的一级相变线重合。这里我们证明了一级相变意味着无限团簇密度的跳跃,因此Kert'esz线保持在一级相变线以下。我们还分析了大场的区域,并用随机比较的方法证明了$H_k(\beta)$等于$\log(q-1)-\log(\beta-\beta_p)$,因为$\beta$变为$\beta_p=-\log(1-p_c)$,其中$p_c$是键渗流的阈值。
---
英文标题:
《On the Kert\'esz line: Some rigorous bounds》
---
作者:
Jean Ruiz (CPT), Marc Wouts (MODAL'x)
---
最新提交年份:
2008
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics        物理学
二级分类:Mathematical Physics        数学物理
分类描述:Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
一级分类:Mathematics        数学
二级分类:Mathematical Physics        数学物理
分类描述:math.MP is an alias for math-ph. Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories
math.mp是math-ph的别名。这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别
--
一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--

---
英文摘要:
  We study the Kert\'esz line of the $q$--state Potts model at (inverse) temperature $\beta$, in presence of an external magnetic field $h$. This line separates two regions of the phase diagram according to the existence or not of an infinite cluster in the Fortuin-Kasteleyn representation of the model. It is known that the Kert\'esz line $h_K (\beta)$ coincides with the line of first order phase transition for small fields when $q$ is large enough. Here we prove that the first order phase transition implies a jump in the density of the infinite cluster, hence the Kert\'esz line remains below the line of first order phase transition. We also analyze the region of large fields and prove, using techniques of stochastic comparisons, that $h_K (\beta)$ equals $\log (q - 1) - \log (\beta - \beta_p)$ to the leading order, as $\beta$ goes to $\beta_p = - \log (1 - p_c)$ where $p_c$ is the threshold for bond percolation.
---
PDF链接:
https://arxiv.org/pdf/802.1826
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:ert Mathematical Applications formulations Differential 磁场 prove line fields 重合

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-5 17:44