楼主: 何人来此
725 1

[电气工程与系统科学] 基于复数卷积神经的增强雷达成像 网络 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
64.8012
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24593 点
帖子
4128
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-15 08:15:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
卷积神经网络(CNN)已经成功地应用于图像分类等遥感任务,并显示出比以往技术更好的性能。对于雷达成像界来说,一个自然的问题是:能否将CNN引入雷达成像并增强其性能?这封信对这个问题给出了肯定的回答。本文首先提出了一种利用复值CNN(CV-CNN)增强雷达成像的处理框架。然后介绍了对CV-CNN的两种改进,使其适应雷达成像任务。随后,给出了训练数据的生成方法,并给出了具体的实现细节。最后进行了仿真和实验,结果表明了该方法在成像质量和计算效率上的优越性。
---
英文标题:
《Enhanced Radar Imaging Using a Complex-valued Convolutional Neural
  Network》
---
作者:
Jingkun Gao, Bin Deng, Yuliang Qin, Hongqiang Wang, Xiang Li
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Convolutional neural networks (CNN) have been successfully employed to tackle several remote sensing tasks such as image classification and show better performance than previous techniques. For the radar imaging community, a natural question is: Can CNN be introduced to radar imaging and enhance its performance? The presented letter gives an affirmative answer to this question. We firstly propose a processing framework by which a complex-valued CNN (CV-CNN) is used to enhance radar imaging. Then we introduce two modifications to the CV-CNN to adapt it to radar imaging tasks. Subsequently, the method to generate training data is shown and some implementation details are presented. Finally, simulations and experiments are carried out, and both results show the superiority of the proposed method on imaging quality and computational efficiency.
---
PDF链接:
https://arxiv.org/pdf/1712.10096
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Applications Optimization Successfully Modification Application show 实现 presented 性能 给出

沙发
lisa11yang 发表于 2022-3-15 08:38:26

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-29 03:15