楼主: kedemingshi
391 0

[计算机科学] 启发式策划策略在进化算法中的应用 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
89.2735
学术水平
0 点
热心指数
8 点
信用等级
0 点
经验
24665 点
帖子
4127
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
kedemingshi 在职认证  发表于 2022-3-16 16:10:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
破解主谋谜题的艺术由唐纳德·克努斯发起,已经30多岁了;尽管如此,它仍然受到运筹学和计算机游戏期刊的关注,更不用说自然启发的随机算法文献了。在本文中,我们试图提出一种策略,允许自然启发的算法获得与基于穷举搜索策略的算法一样好的结果;为了做到这一点,我们首先回顾、比较和改进当前解决这一难题的方法;然后我们用一个分布估计算法对其中的一个策略进行了测试。最后,我们试图找到一种策略,它不是穷尽的,然后可以包含在自然启发的算法(如进化算法或粒子群算法)中。本文证明了在进化算法的适应度函数中引入局部熵后,进化算法比随机算法具有更好的性能,并给出了如何在不增加计算开销的情况下将最佳启发式策略引入进化算法的经验法则。
---
英文标题:
《Adapting Heuristic Mastermind Strategies to Evolutionary Algorithms》
---
作者:
Tomas Philip Runarsson, Juan J. Merelo-Guervos
---
最新提交年份:
2009
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Neural and Evolutionary Computing        神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  The art of solving the Mastermind puzzle was initiated by Donald Knuth and is already more than 30 years old; despite that, it still receives much attention in operational research and computer games journals, not to mention the nature-inspired stochastic algorithm literature. In this paper we try to suggest a strategy that will allow nature-inspired algorithms to obtain results as good as those based on exhaustive search strategies; in order to do that, we first review, compare and improve current approaches to solving the puzzle; then we test one of these strategies with an estimation of distribution algorithm. Finally, we try to find a strategy that falls short of being exhaustive, and is then amenable for inclusion in nature inspired algorithms (such as evolutionary or particle swarm algorithms). This paper proves that by the incorporation of local entropy into the fitness function of the evolutionary algorithm it becomes a better player than a random one, and gives a rule of thumb on how to incorporate the best heuristic strategies to evolutionary algorithms without incurring in an excessive computational cost.
---
PDF链接:
https://arxiv.org/pdf/0912.2415
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:进化算法 启发式 try strategy puzzle 增加 paper

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-6 21:38