摘要翻译:
本文介绍了一般结合代数a的微分算子的一种新的形式,它用双导子的双模DDer(a)代替了交换代数上Grothendieck的微分算子的概念,从而代替了交换代数上的Grothendieck的微分算子的概念。我们的微分算子不作用于代数A本身,而是作用于F(A),一个以泛函方式与任何非交换代数A相关联的Fock空间。微分算子的相应代数D(F(A))是过滤的,而相关分次代数gr D(F(A))在某种扭曲意义上是交换的。由此得到的gr D(F(A))上的双泊松结构与Van den Bergh提出的双泊松结构密切相关。具体地,我们证明了当A是光滑的时,gr D(F(A))=F(T_A(DDer(A))。Fock空间F(A)中带有一个额外的轮架结构,这是一个与轮式支柱概念密切相关的新概念,对我们的构造至关重要。也有谎言的概念,等等。在这种语言中,D(F(A))成为一个双导子的李轴子的泛包络轴子。在本文的第二部分,我们将Koszul的一个经典构造推广到非对易环境中,证明了DDer(a)上任何Ricci-平坦的、无扭转的双模连接都会产生一个二阶(轮式)微分算子,它是BV-算子的非对易模拟。
---
英文标题:
《Differential operators and BV structures in noncommutative geometry》
---
作者:
Victor Ginzburg and Travis Schedler
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Rings and Algebras 环与代数
分类描述:Non-commutative rings and algebras, non-associative algebras, universal algebra and lattice theory, linear algebra, semigroups
非交换环与代数,非结合代数,泛代数与格论,线性代数,半群
--
---
英文摘要:
We introduce a new formalism of differential operators for a general associative algebra A. It replaces Grothendieck's notion of differential operator on a commutative algebra in such a way that derivations of the commutative algebra are replaced by DDer(A), the bimodule of double derivations. Our differential operators act not on the algebra A itself but rather on F(A), a certain `Fock space' associated to any noncommutative algebra A in a functorial way. The corresponding algebra D(F(A)), of differential operators, is filtered and gr D(F(A)), the associated graded algebra, is commutative in some `twisted' sense. The resulting double Poisson structure on gr D(F(A)) is closely related to the one introduced by Van den Bergh. Specifically, we prove that gr D(F(A))=F(T_A(DDer(A)), provided A is smooth. It is crucial for our construction that the Fock space F(A) carries an extra-structure of a wheelgebra, a new notion closely related to the notion of a wheeled PROP. There are also notions of Lie wheelgebras, and so on. In that language, D(F(A)) becomes the universal enveloping wheelgebra of a Lie wheelgebroid of double derivations. In the second part of the paper we show, extending a classical construction of Koszul to the noncommutative setting, that any Ricci-flat, torsion-free bimodule connection on DDer(A) gives rise to a second order (wheeled) differential operator, a noncommutative analogue of the BV-operator.
---
PDF链接:
https://arxiv.org/pdf/0710.3392


雷达卡



京公网安备 11010802022788号







