楼主: 何人来此
328 0

[电气工程与系统科学] 用多波束深度吸引子网络破解鸡尾酒会问题 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
64.8012
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24593 点
帖子
4128
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-17 12:10:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
虽然近年来神经网络方法在单通道语音分离,或者更广泛的鸡尾酒会问题上取得了显著的进步,但它们在复杂混合语音中的性能仍然不尽如人意。在这项工作中,我们提出了一个新颖的多通道框架用于多话者分离。该模型首先将输入的多通道混合信号转换为一组波束形成的固定波束方向图信号。对于这种波束形成,我们建议使用差分波束形成器,因为它们更适合于语音分离。然后将每个波束形成的信号馈入单通道锚定的深吸引子网络中产生分离信号。通过对每一光束的分离输出进行后选择,得到最终的分离结果。为了评估所提出的系统,我们创建了一个具有挑战性的数据集,包括2个、3个或4个说话人的混合。结果表明,该系统在语音分离方面有了很大的改进,在4个、3个和2个重叠说话人的混合语音中,平均信噪比分别提高了11.5dB、11.76dB和11.02dB,与使用oracle位置、源和噪声信息的最小方差无失真响应波束形成器的性能相当。我们还用一个干净训练的声学模型对分离的语音进行了语音识别,在4个、3个和2个说话人的完全重叠语音上,相对错误率分别降低了45.76%、59.40%和62.80%。采用远传声学模型,进一步降低了功耗。
---
英文标题:
《Cracking the cocktail party problem by multi-beam deep attractor network》
---
作者:
Zhuo Chen, Jinyu Li, Xiong Xiao, Takuya Yoshioka, Huaming Wang,
  Zhenghao Wang, Yifan Gong
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  While recent progresses in neural network approaches to single-channel speech separation, or more generally the cocktail party problem, achieved significant improvement, their performance for complex mixtures is still not satisfactory. In this work, we propose a novel multi-channel framework for multi-talker separation. In the proposed model, an input multi-channel mixture signal is firstly converted to a set of beamformed signals using fixed beam patterns. For this beamforming, we propose to use differential beamformers as they are more suitable for speech separation. Then each beamformed signal is fed into a single-channel anchored deep attractor network to generate separated signals. And the final separation is acquired by post selecting the separating output for each beams. To evaluate the proposed system, we create a challenging dataset comprising mixtures of 2, 3 or 4 speakers. Our results show that the proposed system largely improves the state of the art in speech separation, achieving 11.5 dB, 11.76 dB and 11.02 dB average signal-to-distortion ratio improvement for 4, 3 and 2 overlapped speaker mixtures, which is comparable to the performance of a minimum variance distortionless response beamformer that uses oracle location, source, and noise information. We also run speech recognition with a clean trained acoustic model on the separated speech, achieving relative word error rate (WER) reduction of 45.76\%, 59.40\% and 62.80\% on fully overlapped speech of 4, 3 and 2 speakers, respectively. With a far talk acoustic model, the WER is further reduced.
---
PDF链接:
https://arxiv.org/pdf/1803.10924
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:鸡尾酒会 鸡尾酒 Modification Segmentation localization 分离 模型 network 语音 party

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 11:41