摘要翻译:
本文证明了函数域上无幂商的交换代数群G的Lindemann-Weierstrass定理(q-线性无关代数数的指数是代数无关的)的一个类似定理。我们集中讨论了从LG到G的exp所满足的微分代数关系的解。
---
英文标题:
《A Lindemann-Weierstrass theorem for semiabelian varieties over function
fields》
---
作者:
Daniel Bertrand and Anand Pillay
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove an analogue of the Lindemann-Weierstrass theorem (that the exponentials of Q-linearly independent algebraic numbers are algebraically independent) for commutative algebraic groups G without unipotent quotients, over function fields. We concentrate on solutions to the the differential algebraic relations satisfied by exp from LG to G.
---
PDF链接:
https://arxiv.org/pdf/0810.0383


雷达卡



京公网安备 11010802022788号







