摘要翻译:
本文介绍了Maass波尖形式的模符号。它们以布尔代数上有限可加函数的名义出现,布尔代数是由具有非正有理端点的区间生成的,其值是解析函数([MaMar2]意义上的伪测度)。在扩展的引言中解释了基本问题和类比之后,我在SEC中构造了模块化符号。1和SEC中相关的L\'Evy-Mellin变换。2.全文是对Lewis-Zagier基础研究[LZ2]的扩展注脚。
---
英文标题:
《Remarks on modular symbols for Maass wave forms》
---
作者:
Yu I. Manin
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper I introduce modular symbols for Maass wave cusp forms. They appear in the guise of finitely additive functions on the Boolean algebra generated by intervals with non--positive rational ends, with values in analytic functions (pseudo--measures in the sense of [MaMar2]). After explaining the basic issues and analogies in the extended Introduction, I construct modular symbols in the sec. 1 and the related L\'evy--Mellin transforms in the sec. 2. The whole paper is an extended footnote to the Lewis--Zagier fundamental study [LZ2].
---
PDF链接:
https://arxiv.org/pdf/0803.3270


雷达卡



京公网安备 11010802022788号







