楼主: 大多数88
434 0

[数学] 极小度超曲面的动因 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
70.8997
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-3-20 22:50:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
利用X中包含的L维平面的变化量F(X)研究了射影空间中超曲面X的有理系数周动。如果X的次足够小,则证明了X的动的本原部分是F(X)中适当完全交的动的直和与Lefschetz动的L次扭Q(-L)的张量积。
---
英文标题:
《Motives of hypersurfaces of very small degree》
---
作者:
Andre Chatzistamatiou
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We study the Chow motive (with rational coefficients) of a hypersurface X in the projective space by using the variety F(X) of l-dimensional planes contained in X. If the degree of X is sufficiently small we show that the primitive part of the motive of X is the tensor product of a direct summand in the motive of a suitable complete intersection in F(X) and the l-th twist Q(-l) of the Lefschetz motive.
---
PDF链接:
https://arxiv.org/pdf/0801.2494
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:coefficients Dimensional mathematics coefficient Projective small space projective 曲面 系数

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 03:57