摘要翻译:
本文主要研究线性正则变换(LCT)域内带限随机信号的非均匀采样问题。我们证明了在LCT域内对带限的随机信号进行二阶统计特性意义上的非均匀采样等于在LCT域内经过预滤波后的均匀采样。此外,我们提出了一种在LCT域内对带限的随机信号进行非均匀采样的近似恢复方法。此外,我们还研究了非均匀抽样的均方误差。最后,我们做了一些仿真来验证我们的理论结果的正确性。
---
英文标题:
《Nonuniform Sampling for Random Signals Bandlimited in the Linear
Canonical Transform Domain》
---
作者:
Haiye Huo, Wenchang Sun
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
In this paper, we mainly investigate the nonuniform sampling for random signals which are bandlimited in the linear canonical transform (LCT) domain. We show that the nonuniform sampling for a random signal bandlimited in the LCT domain is equal to the uniform sampling in the sense of second order statistic characters after a pre-filter in the LCT domain. Moreover, we propose an approximate recovery approach for nonuniform sampling of random signals bandlimited in the LCT domain. Furthermore, we study the mean square error of the nonuniform sampling. Finally, we do some simulations to verify the correctness of our theoretical results.
---
PDF链接:
https://arxiv.org/pdf/1803.03355


雷达卡



京公网安备 11010802022788号







