楼主: 能者818
469 0

[电气工程与系统科学] 基于阈值的事件序列的差异赋范空间 抽样 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.6240
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-3-22 14:05:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
回顾最近关于将基于阈值的抽样描述为准等距映射的结果,导出了事件序列空间的度量和拓扑结构的数学含义。在此背景下,将事件序列空间推广到具有Hermann Weyl差异测度的赋范空间。用Jordan分解性质刻画了有限差分范数序列。它的对偶范数原来是总变差的范数。作为副产品,得到了序列缺乏单调性的一个测度。进一步的结果是差异范数与总变差之间的一个不等式,类似于海森堡的测不准关系。
---
英文标题:
《On the Discrepancy Normed Space of Event Sequences for Threshold-based
  Sampling》
---
作者:
Bernhard A. Moser
---
最新提交年份:
2018
---
分类信息:

一级分类:Mathematics        数学
二级分类:Metric Geometry        度量几何学
分类描述:Euclidean, hyperbolic, discrete, convex, coarse geometry, comparisons in Riemannian geometry, symmetric spaces
欧氏,双曲,离散,凸,粗几何,黎曼几何的比较,对称空间
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Recalling recent results on the characterization of threshold-based sampling as quasi-isometric mapping, mathematical implications on the metric and topological structure of the space of event sequences are derived. In this context, the space of event sequences is extended to a normed space equipped with Hermann Weyl's discrepancy measure. Sequences of finite discrepancy norm are characterized by a Jordan decomposition property. Its dual norm turns out to be the norm of total variation. As a by-product a measure for the lack of monotonicity of sequences is obtained. A further result refers to an inequality between the discrepancy norm and total variation which resembles Heisenberg's uncertainty relation.
---
PDF链接:
https://arxiv.org/pdf/1806.06273
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:赋范空间 Applications Optimization Implications Mathematical Jordan 空间 variation sequences based

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-6 21:40