摘要翻译:
在这项工作中,我们提出了使用丢包作为贝叶斯估计量来增加深度神经网络(DNN)用于语音增强的泛化能力。利用Monte Carlo(MC)dropout算法,证明了该算法在未知噪声和信噪比条件下具有较好的增强效果。在信噪比分别为0、5和10 dB的2因子、M109、Babble、Leopard和Volvo噪声的语音上训练DNN,并在白色、粉色和1因子噪声的语音上测试DNN。语音样本从TIMIT数据库中获得,噪声从NOISEX-92中获得。在另一个实验中,我们分别在0,5和10分贝信噪比下训练了5个DNN模型,分别对被因子2,M109,Babble,Leopard和Volvo噪声破坏的语音进行训练。模型精度(用MC dropout估计)作为误差平方的代理,根据DNN模型在每帧测试数据上的性能动态选择最佳的DNN模型。
---
英文标题:
《DNN Based Speech Enhancement for Unseen Noises Using Monte Carlo Dropout》
---
作者:
Nazreen P M, A G Ramakrishnan
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
---
英文摘要:
In this work, we propose the use of dropouts as a Bayesian estimator for increasing the generalizability of a deep neural network (DNN) for speech enhancement. By using Monte Carlo (MC) dropout, we show that the DNN performs better enhancement in unseen noise and SNR conditions. The DNN is trained on speech corrupted with Factory2, M109, Babble, Leopard and Volvo noises at SNRs of 0, 5 and 10 dB and tested on speech with white, pink and factory1 noises. Speech samples are obtained from the TIMIT database and noises from NOISEX-92. In another experiment, we train five DNN models separately on speech corrupted with Factory2, M109, Babble, Leopard and Volvo noises, at 0, 5 and 10 dB SNRs. The model precision (estimated using MC dropout) is used as a proxy for squared error to dynamically select the best of the DNN models based on their performance on each frame of test data.
---
PDF链接:
https://arxiv.org/pdf/1806.00516


雷达卡



京公网安备 11010802022788号







