摘要翻译:
本文证明了Braverman关于Laumon拟滞后空间的一个猜想。我们考虑生成函数Z(m),它的系数是Laumon空间切丛的等变Chern多项式的积分。我们证明了Braverman猜想,即Z(m)与Calogero-Sutherland哈密顿量的本征函数一致,直到我们指定的一个简单因子。这个猜想是受Nekrasov在仿射{sl}n条件下的工作的启发,在这个条件下类似的猜想仍然是开放的。
---
英文标题:
《Laumon Spaces and the Calogero-Sutherland Integrable System》
---
作者:
Andrei Negut
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
This paper contains a proof of a conjecture of Braverman concerning Laumon quasiflag spaces. We consider the generating function Z(m), whose coefficients are the integrals of the equivariant Chern polynomial (with variable m) of the tangent bundles of the Laumon spaces. We prove Braverman's conjecture, which states that Z(m) coincides with the eigenfunction of the Calogero-Sutherland hamiltonian, up to a simple factor which we specify. This conjecture was inspired by the work of Nekrasov in the affine \hat{sl}_n setting, where a similar conjecture is still open.
---
PDF链接:
https://arxiv.org/pdf/0811.4454


雷达卡



京公网安备 11010802022788号







