本人现在在做面板数据回归,被解释变量是收入流动等级(mobility_order),为有序变量,取值为【-4,4】中九个数值中的一个,相应的数字代表收入在上一期和下一期之间的变动级数,正向符号代表收入向上流动,负向符号代表收入向下流动,因为被解释变量是有序变量,因此首选使用的是有序probit回归。做稳健性分析时,想用的一种方法是将有序变量转换成0-1变量(mobility_up),即如果两期之间的收入等级变化是向上流动的,则取1,如果收入等级没有变化或者收入等级是向下变化的,则取0,然后使用probit回归来验证结果的稳健性。个人觉得从理论上说两种方法的回归系数和显著性应该是一致的,毕竟只是变换了一下被解释变量的表示方法而已,但回归结果符号和显著性都不一样,附上两种方法的回归结果,求老师们帮忙解释一下
- Ordered probit regression Number of obs = 13,841
- Probit regression Number of obs = 13,841
- [CODE]
- * Example generated by -dataex-. To install: ssc install dataex
- clear
- input float(mobility_order mobility_up zigu_2) byte wudengfen float(age age2 gender marriage education_2 health_1 dependency socialcapital houseelse landvalue distance)
- 0 0 0 4 42 1764 0 1 9 5 0 6.685861 5 0 10
- 2 1 0 2 24 576 1 2 8 3 .4 6.685861 0 8.047509 4
- -2 0 0 4 26 676 1 1 8 3 .4 4.94876 5 8.38389 4
- 0 0 0 5 20 400 1 1 12 3 0 1.94591 0 0 4
- 0 0 0 5 22 484 1 0 12 2 0 0 5 0 4
- 1 1 1 4 30 900 1 1 0 3 0 8.517393 5 8.047509 30
- 0 0 0 5 59 3481 0 1 12 2 .2 9.210441 5 0 15
- -1 0 0 3 60 3600 1 2 0 3 0 0 0 10.78805 90
- -1 0 0 2 62 3844 1 1 0 3 0 0 5 0 90
- -1 0 0 5 53 2809 1 1 6 5 0 6.908755 5 0 54
- 0 0 0 5 26 676 1 0 16 3 0 8.517393 5 0 170
- 0 0 0 5 31 961 1 1 9 5 .3333333 8.853808 5 0 60
- -2 0 1 4 51 2601 0 1 9 2 0 7.601402 5 11.543707 80
- 0 0 0 5 37 1369 1 0 9 5 0 6.908755 5 0 70
- 0 0 0 2 30 900 1 2 9 4 0 6.398595 0 9.88779 40
- 2 1 0 2 32 1024 1 1 9 3 0 6.908755 5 9.145908 40
- -1 0 0 3 47 2209 1 2 11 4 .2 0 0 9.993145 16
- 0 0 0 2 49 2401 0 1 6 3 .2 8.517393 5 9.656692 16
- 0 0 0 4 26 676 0 1 9 2 .5 6.908755 5 0 12
- 0 0 0 5 21 441 0 1 9 4 0 0 0 8.740497 16
- 0 0 0 5 33 1089 1 2 12 5 0 0 0 0 14
- 4 1 0 1 21 441 0 2 9 3 .6666667 6.908755 0 9.839003 14
- 0 0 0 3 44 1936 0 1 0 4 .4 8.517393 5 9.993145 66
- 1 1 0 1 27 729 1 1 4 3 .5 7.313887 5 9.656692 100
- -2 0 0 3 62 3844 0 2 0 1 0 7.601402 0 8.740497 160
- 0 0 0 1 67 4489 1 1 0 2 .5 0 5 8.047509 160
- 0 0 0 5 19 361 1 0 12 3 0 0 5 0 120
- 1 1 0 3 24 576 0 2 9 5 .3333333 0 0 0 40
- -2 0 1 5 56 3136 1 1 9 2 .25 9.210441 1 12.547003 40
- 0 0 1 5 32 1024 1 2 9 3 .3333333 6.216606 1 10.612164 40
- 0 0 0 5 34 1156 1 1 9 2 .3333333 7.601402 1 0 40
- 0 0 0 4 47 2209 0 1 6 3 0 6.398595 5 0 20
- 0 0 0 5 37 1369 1 1 9 3 0 8.0067005 5 7.536897 30
- -3 0 0 5 27 729 1 2 9 3 .3333333 7.601402 0 0 6
- 4 1 0 1 58 3364 0 1 0 2 0 10.308986 0 6.439351 13
- 0 0 0 5 61 3721 1 2 0 2 0 10.308986 0 7.131699 20
- 0 0 0 5 63 3969 1 1 0 5 0 9.903538 5 7.131699 20
- 1 1 0 1 59 3481 1 1 0 2 0 7.601402 0 9.145908 13
- 0 0 0 3 61 3721 1 2 0 4 0 7.601402 0 0 20
- 0 0 0 3 63 3969 1 1 0 4 0 6.908755 5 0 20
- -1 0 1 2 59 3481 1 1 0 3 0 8.699681 0 11.042938 13
- 1 1 0 2 62 3844 0 2 0 3 0 8.699681 0 10.048713 20
- 1 1 0 3 63 3969 1 1 0 2 0 8.987322 5 0 20
- 0 0 0 5 67 4489 1 1 6 4 .5 8.0067005 0 11.736077 13
- 0 0 0 1 71 5041 1 1 7 3 .6 7.601402 5 0 20
- 1 1 1 3 48 2304 0 1 6 1 0 8.0067005 0 0 13
- -1 0 0 5 50 2500 0 2 7 1 0 8.0067005 0 9.822196 20
- 1 1 0 4 52 2704 0 1 7 1 0 7.601402 5 10.12667 20
- -1 0 1 5 30 900 0 1 9 4 .6 9.210441 0 11.67541 13
- 1 1 0 4 32 1024 0 2 9 3 .6 9.210441 0 9.145908 20
- -1 0 0 5 34 1156 0 1 9 3 .6 8.699681 5 8.4528675 20
- 0 0 0 4 25 625 0 0 16 4 .16666667 . 1 13.754304 13
- 1 1 0 4 51 2601 0 2 9 1 .16666667 0 1 12.71063 20
- 0 0 0 5 29 841 0 0 16 1 0 8.517393 1 10.502523 20
- 0 0 0 4 44 1936 0 1 6 3 .5 8.2943 0 11.448398 13
- -1 0 1 4 46 2116 0 2 6 4 .4 7.601402 0 11.95922 20
- 0 0 0 3 48 2304 0 1 6 1 .5 7.601402 5 11.225257 20
- 1 1 0 4 30 900 0 1 9 5 .3333333 7.601402 0 7.131699 13
- 1 1 1 4 56 3136 0 2 4 4 .3333333 7.601402 1 7.824446 20
- -1 0 1 5 35 1225 1 1 10 3 .3333333 9.210441 1 0 20
- -1 0 0 4 62 3844 1 1 0 1 .25 8.0067005 5 9.993145 20
- 2 1 1 2 54 2916 1 1 6 3 0 8.517393 0 7.824446 13
- 0 0 0 5 56 3136 1 2 6 4 0 8.517393 0 11.512936 20
- -2 0 0 5 58 3364 1 1 6 1 0 8.699681 5 10.75526 20
- 1 1 0 3 27 729 0 1 0 4 .3333333 7.601402 0 9.993145 13
- 0 0 1 5 24 576 1 0 16 3 0 9.903538 0 6.439351 13
- 0 0 0 5 58 3364 1 2 9 2 0 9.903538 1 0 20
- 0 0 0 5 60 3600 1 1 9 3 0 8.699681 5 7.536897 20
- 1 1 0 3 46 2116 0 1 6 3 0 8.853808 0 11.042938 13
- 0 0 1 4 48 2304 0 2 9 5 0 8.853808 0 11.411042 20
- -2 0 0 4 50 2500 0 1 9 3 0 7.601402 5 11.042938 20
- -1 0 0 5 52 2704 1 1 9 4 0 9.210441 0 0 13
- 0 0 0 4 56 3136 0 2 0 2 0 9.210441 0 11.471462 20
- -1 0 0 4 58 3364 0 1 0 3 0 9.903538 5 11.042938 20
- -1 0 0 5 49 2401 0 1 9 4 0 9.210441 0 11.448398 13
- 1 1 0 4 38 1444 1 1 9 4 .5 9.210441 0 11.95922 13
- -2 0 0 4 40 1600 1 2 9 3 .5 9.210441 0 12.309874 20
- 2 1 0 2 69 4761 1 1 3 3 .5 8.0067005 5 11.448398 20
- 0 0 1 3 63 3969 0 1 6 1 .3333333 6.908755 0 0 13
- 1 1 0 3 33 1089 0 1 0 3 .5 . 0 0 13
- -1 0 0 4 36 1296 1 2 12 5 .5 0 0 0 20
- 2 1 0 3 37 1369 0 1 5 4 .5 7.313887 5 0 20
- 1 1 0 5 31 961 0 1 9 5 .3333333 9.210441 0 10.36961 13
- -1 0 0 5 62 3844 0 2 7 4 .3333333 9.210441 0 0 20
- 0 0 0 5 64 4096 0 1 7 1 0 8.0067005 5 6.306047 20
- 3 1 0 1 76 5776 0 2 0 1 .3 0 0 0 20
- -3 0 0 4 78 6084 0 1 0 2 .7 8.2943 5 6.439351 20
- 1 1 0 3 23 529 1 1 12 4 .3333333 8.987322 0 10.68627 13
- -2 0 0 4 24 576 0 2 12 5 .2857143 8.987322 1 11.091727 20
- 1 1 0 2 26 676 0 1 12 5 .2857143 10.308986 5 10.375474 20
- 1 1 1 4 36 1296 0 1 9 3 .5 8.517393 0 11.45227 13
- 0 0 1 5 38 1444 0 2 9 2 .25 8.517393 0 9.271059 20
- 0 0 0 5 40 1600 0 1 9 2 .25 7.601402 5 9.551338 20
- 1 1 0 2 29 841 1 1 9 2 .5 9.210441 5 7.690972 20
- 0 0 0 2 36 1296 0 1 6 5 .3333333 8.0067005 5 7.354682 20
- 1 1 0 2 32 1024 1 1 9 5 .4 8.0067005 0 9.839003 13
- 1 1 0 3 34 1156 1 2 9 5 .25 8.0067005 0 11.354088 20
- 0 0 0 4 36 1296 1 1 9 5 .25 8.0067005 5 10.819798 20
- 0 0 0 1 77 5929 1 5 6 2 1 0 0 0 120
- -1 0 0 5 60 3600 1 0 0 5 0 5.303305 5 0 40
- end
[/code]


雷达卡



京公网安备 11010802022788号







