摘要翻译:
在一定的归一化假设下,我们证明了Voevodsky的$\pro^1$-谱$\mathrm{BGL}$在$\spec(\mathbb{Z})$上是唯一的。根据Voevodsky的思想,在动态稳定同伦范畴中给出了$\pro^1$-谱$\mathrm{BGL}$具有交换的$\pro^1$-环谱的结构。此外,我们还证明了在一定的归一化假设下,该环结构在$\spec(\mathbb{Z})上是唯一的。对于任意一个有限Krull维数的Noetherian格式$S$,我们将这个结构拉回来,得到$\mathrm{BGL}$上的一个区分的单体结构。这种单相结构与我们证明motivic Conner-Floyd定理有关。Gepner和Snaith也用它来得到Snaith定理的模体版本。
---
英文标题:
《On Voevodsky's algebraic K-theory spectrum BGL》
---
作者:
I. Panin, K. Pimenov, O. R\"ondigs
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
---
英文摘要:
Under a certain normalization assumption we prove that the $\Pro^1$-spectrum $\mathrm{BGL}$ of Voevodsky which represents algebraic $K$-theory is unique over $\Spec(\mathbb{Z})$. Following an idea of Voevodsky, we equip the $\Pro^1$-spectrum $\mathrm{BGL}$ with the structure of a commutative $\Pro^1$-ring spectrum in the motivic stable homotopy category. Furthermore, we prove that under a certain normalization assumption this ring structure is unique over $\Spec(\mathbb{Z})$. For an arbitrary Noetherian scheme $S$ of finite Krull dimension we pull this structure back to obtain a distinguished monoidal structure on $\mathrm{BGL}$. This monoidal structure is relevant for our proof of the motivic Conner-Floyd theorem. It has also been used by Gepner and Snaith to obtain a motivic version of Snaith's theorem.
---
PDF链接:
https://arxiv.org/pdf/0709.3905


雷达卡



京公网安备 11010802022788号







