摘要翻译:
本文给出了一个逐项多元Puiseux级数展开式的算法,该展开式作为代数方程组奇点零点的局部参数。该算法是牛顿平面代数曲线法的推广,用系统产生的理想的热带变体代替牛顿多边形。作为推论,我们推导出拟普通奇点的热带变种的一个性质。
---
英文标题:
《Puiseux power series solutions for systems of equations》
---
作者:
Fuensanta Aroca, Giovanna Ilardi and Lucia Lopez de Medrano
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We give an algorithm to compute term by term multivariate Puiseux series expansions of series arising as local parametrizations of zeroes of systems of algebraic equations at singular points. The algorithm is an extension of Newton's method for plane algebraic curves replacing the Newton polygon by the tropical variety of the ideal generated by the system. As a corollary we deduce a property of tropical varieties of quasi-ordinary singularities.
---
PDF链接:
https://arxiv.org/pdf/0811.0414


雷达卡



京公网安备 11010802022788号







