摘要翻译:
本文的主要目的是给出一个新的算法,它将线性超曲面系统(in$\mathbbp^n$)的正则性和存在超曲面的最低度限定在一起。为此,我们提出并证明了一个新的定理,该定理允许通过将线性系统分解为非特殊(更简单)的系统来表示线性系统的非特殊。因此,我们在$\pp^2$上给出了多点Seshadri常数的新界。
---
英文标题:
《Regularity and non-emptyness of linear systems in $\mathbb P^n$》
---
作者:
Marcin Dumnicki
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The main goal of this paper is to present a new algorithm bounding the regularity and ``alpha'' (the lowest degree of existing hypersurface) of a linear system of hypersurfaces (in $\mathbb P^n$) passing through multiple points in general position. To do the above we formulate and prove new theorem, which allows to show non-specialty of linear system by splitting it into non-special (and simpler) systems. As a result we give new bounds for multiple point Seshadri constants on $\PP^2$.
---
PDF链接:
https://arxiv.org/pdf/0802.0925


雷达卡



京公网安备 11010802022788号







