摘要翻译:
本文主要研究有限域上的多项式动力系统。这些系统出现在计算机科学、工程和计算生物学的各种背景下,例如作为细胞内生化网络的模型。结果表明,与它们的结构、动力学以及控制理论有关的几个问题可以用代数几何学的语言表述和解决。
---
英文标题:
《On the algebraic geometry of polynomial dynamical systems》
---
作者:
Abdul S. Jarrah and Reinhard Laubenbacher
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
This paper focuses on polynomial dynamical systems over finite fields. These systems appear in a variety of contexts, in computer science, engineering, and computational biology, for instance as models of intracellular biochemical networks. It is shown that several problems relating to their structure and dynamics, as well as control theory, can be formulated and solved in the language of algebraic geometry.
---
PDF链接:
https://arxiv.org/pdf/0803.1825


雷达卡



京公网安备 11010802022788号







