摘要翻译:
1954年,Hirzebruch问哪些Chern数的线性组合是光滑复射影簇的拓扑不变量。我们在小维数下给出了这个问题的完整答案,并在不受维数限制的情况下证明了部分结果。
---
英文标题:
《Chern numbers and diffeomorphism types of projective varieties》
---
作者:
D. Kotschick
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In 1954 Hirzebruch asked which linear combinations of Chern numbers are topological invariants of smooth complex projective varieties. We give a complete answer to this question in small dimensions, and also prove partial results without restrictions on the dimension.
---
PDF链接:
https://arxiv.org/pdf/0709.2857


雷达卡



京公网安备 11010802022788号







