楼主: 可人4
446 0

[计算机科学] 使用独特型行为中介的双时间刻度学习 导航移动机器人 [推广有奖]

  • 0关注
  • 2粉丝

会员

学术权威

76%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
49.1643
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24465 点
帖子
4070
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
可人4 在职认证  发表于 2022-4-2 22:35:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
提出了一种短期学习(STL)和长期学习(LTL)相结合的解决移动机器人导航问题的方法,并在实际和虚拟领域进行了测试。LTL阶段由快速模拟组成,使用遗传算法来导出不同的行为集,编码为可变的属性集,STL阶段是独特型人工免疫系统。LTL阶段的结果表明,行为集发展非常迅速,当使用多个自治种群时,获得的多样性明显更大,而不是单一种群。在不同的场景下评估该体系结构,包括移除LTL阶段和在STL阶段关闭独特型机制。这些比较提供了大量证据,证明最好的选择是同时包括LTL阶段和独特型系统。此外,本文还表明,结构上不同的环境可以用于两个阶段,而不影响转移性。
---
英文标题:
《Two-Timescale Learning Using Idiotypic Behaviour Mediation For A
  Navigating Mobile Robot》
---
作者:
Amanda Whitbrook, Uwe Aickelin, Jonathan M. Garibaldi
---
最新提交年份:
2010
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Neural and Evolutionary Computing        神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Computer Science        计算机科学
二级分类:Robotics        机器人学
分类描述:Roughly includes material in ACM Subject Class I.2.9.
大致包括ACM科目I.2.9类的材料。
--

---
英文摘要:
  A combined Short-Term Learning (STL) and Long-Term Learning (LTL) approach to solving mobile-robot navigation problems is presented and tested in both the real and virtual domains. The LTL phase consists of rapid simulations that use a Genetic Algorithm to derive diverse sets of behaviours, encoded as variable sets of attributes, and the STL phase is an idiotypic Artificial Immune System. Results from the LTL phase show that sets of behaviours develop very rapidly, and significantly greater diversity is obtained when multiple autonomous populations are used, rather than a single one. The architecture is assessed under various scenarios, including removal of the LTL phase and switching off the idiotypic mechanism in the STL phase. The comparisons provide substantial evidence that the best option is the inclusion of both the LTL phase and the idiotypic system. In addition, this paper shows that structurally different environments can be used for the two phases without compromising transferability.
---
PDF链接:
https://arxiv.org/pdf/1006.2945
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器人 Environments Intelligence Architecture Presentation 不同 Learning 进行 环境 使用

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-25 18:07