摘要翻译:
本文从跳频扩频信号的稀疏性出发,观察了Hermite和Fourier变换域。利用压缩感知方法可以从减少的样本集中恢复稀疏信号。文中还分析了欠采样和信号重构问题。测量的数量(可用的信号样本)是变化的,并测试重建性能在所有考虑的情况下和两个观察域。信号恢复采用基于梯度的自适应算法。实验结果验证了理论的正确性。
---
英文标题:
《The Hermite and Fourier transforms in sparse reconstruction of
sinusoidal signals》
---
作者:
Valentina Konatar and Maja Vesovic
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Multimedia 多媒体
分类描述:Roughly includes material in ACM Subject Class H.5.1.
大致包括ACM学科类H.5.1中的材料。
--
---
英文摘要:
The paper observes the Hermite and the Fourier Transform domains in terms of Frequency Hopping Spread Spectrum signals sparsification. Sparse signals can be recovered from a reduced set of samples by using the Compressive Sensing approach. The under-sampling and the reconstruction of those signals are also analyzed in this paper. The number of measurements (available signal samples) is varied and reconstruction performance is tested in all considered cases and for both observed domains. The signal recovery is done using an adaptive gradient based algorithm. The theory is verified with the experimental results.
---
PDF链接:
https://arxiv.org/pdf/1802.05115


雷达卡



京公网安备 11010802022788号







