摘要翻译:
在本文中,我们提出了一种基于抽样的新方法,用于寻找可能是随机约束满足问题和约束优化问题解的赋值。我们的方法减少了被分析的原始问题的规模;通过求解这个约简问题,在给定置信度的情况下,在给定的容错阈值内得到满足原模型中机会约束的分配。为了实现这一点,我们融合了随机约束规划和统计学的概念。我们讨论了我们的方法的精确和近似变体。我们所介绍的框架可以立即与已有的求解随机约束程序的方法相一致。通过对若干随机组合优化问题的深入计算研究,证明了该方法的有效性。
---
英文标题:
《Confidence-based Reasoning in Stochastic Constraint Programming》
---
作者:
Roberto Rossi and Brahim Hnich and S. Armagan Tarim and Steven
Prestwich
---
最新提交年份:
2015
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Statistics 统计学
二级分类:Other Statistics 其他统计数字
分类描述:Work in statistics that does not fit into the other stat classifications
从事不适合其他统计分类的统计工作
--
---
英文摘要:
In this work we introduce a novel approach, based on sampling, for finding assignments that are likely to be solutions to stochastic constraint satisfaction problems and constraint optimisation problems. Our approach reduces the size of the original problem being analysed; by solving this reduced problem, with a given confidence probability, we obtain assignments that satisfy the chance constraints in the original model within prescribed error tolerance thresholds. To achieve this, we blend concepts from stochastic constraint programming and statistics. We discuss both exact and approximate variants of our method. The framework we introduce can be immediately employed in concert with existing approaches for solving stochastic constraint programs. A thorough computational study on a number of stochastic combinatorial optimisation problems demonstrates the effectiveness of our approach.
---
PDF链接:
https://arxiv.org/pdf/1110.1892


雷达卡



京公网安备 11010802022788号







