楼主: 能者818
254 0

[数学] 代数方程与凸体 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.6240
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-4-3 17:05:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
著名的Bernstein-Kushnirenko定理来自牛顿多面体理论,它将代数几何和混合体积理论联系起来。最近,作者发现了该定理在任何拟射影簇上的泛型代数方程组中的一个具有深远意义的推广。在本文中,我们回顾了这些结果及其在代数几何和凸几何中的应用。
---
英文标题:
《Algebraic equations and convex bodies》
---
作者:
Kiumars Kaveh, A.G. Khovanskii
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  The well-known Bernstein-Kushnirenko theorem from the theory of Newton polyhedra relates algebraic geometry and the theory of mixed volumes. Recently the authors have found a far-reaching generalization of this theorem to generic systems of algebraic equations on any quasi-projective variety. In the present note we review these results and their applications to algebraic geometry and convex geometry.
---
PDF链接:
https://arxiv.org/pdf/0812.4688
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:代数方程 Applications Application mathematics Mathematic 回顾 起来 凸体 convex Newton

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-31 06:28