摘要翻译:
我们考虑了$(k+1)$维线性子空间的Grassmanian$\MathBB{G}r(k,n)$({\p^1},\o_{\p^1}(n))$。我们定义$\frak{X}_{k,r,d}$为$\p^1$上的$k$维n次线性方程组的分类空间,它的基实现固定数目的固定次数的多项式关系,即固定数目的一定次数的syzies。本文的第一个结果是$\frak{X}_{k,r,d}$维数的计算。在第二部分中,我们将$\frak{X}_{k,r,d}$与Poncelet变种联系起来。特别地,我们证明了线性Syzgies的存在意味着Poncelet变体上奇点的存在。
---
英文标题:
《Geometry of syzygies via Poncelet varieties》
---
作者:
Giovanna Ilardi, Paola Supino, Jean Vall\`es (LMA-PAU)
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We consider the Grassmannian $\mathbb{G}r(k,n)$ of $(k+1)$-dimensional linear subspaces of $V_n=H^0({\P^1},\O_{\P^1}(n))$. We define $\frak{X}_{k,r,d}$ as the classifying space of the $k$-dimensional linear systems of degree $n$ on $\P^1$ whose basis realize a fixed number of polynomial relations of fixed degree, say a fixed number of syzygies of a certain degree. The first result of this paper is the computation of the dimension of $\frak{X}_{k,r,d}$. In the second part we make a link between $\frak{X}_{k,r,d}$ and the Poncelet varieties. In particular, we prove that the existence of linear syzygies implies the existence of singularities on the Poncelet varieties.
---
PDF链接:
https://arxiv.org/pdf/0806.4881


雷达卡



京公网安备 11010802022788号







