楼主: kedemingshi
265 0

[计算机科学] 多任务的概率关系动力学学习 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
89.2735
学术水平
0 点
热心指数
8 点
信用等级
0 点
经验
24665 点
帖子
4127
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
kedemingshi 在职认证  发表于 2022-4-4 16:25:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
Agent的行为影响世界的方式通常可以使用一组关系概率规划规则来紧凑地建模。本文研究了多个相关任务的规则集学习问题。我们采用分层贝叶斯方法,在该方法中,系统学习规则集上的先验分布。我们提出了一类由规则集原型参数化的先验分布,并对其进行随机修改以生成特定于任务的规则集。我们还描述了一种坐标上升算法,该算法迭代优化任务特定规则集和先验分布。实验表明,从相关任务传递信息可以显著减少预测块域中动作效果所需的训练数据量。
---
英文标题:
《Learning Probabilistic Relational Dynamics for Multiple Tasks》
---
作者:
Ashwin Deshpande, Brian Milch, Luke S. Zettlemoyer, Leslie Pack
  Kaelbling
---
最新提交年份:
2012
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  The ways in which an agent's actions affect the world can often be modeled compactly using a set of relational probabilistic planning rules. This paper addresses the problem of learning such rule sets for multiple related tasks. We take a hierarchical Bayesian approach, in which the system learns a prior distribution over rule sets. We present a class of prior distributions parameterized by a rule set prototype that is stochastically modified to produce a task-specific rule set. We also describe a coordinate ascent algorithm that iteratively optimizes the task-specific rule sets and the prior distribution. Experiments using this algorithm show that transferring information from related tasks significantly reduces the amount of training data required to predict action effects in blocks-world domains.
---
PDF链接:
https://arxiv.org/pdf/1206.5249
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:动力学 distribution Hierarchical Intelligence Presentation algorithm 所需 specific 块域 set

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-22 10:26