摘要翻译:
给出了定义在数域上的带分支的射影线的覆盖,定义了代数曲线的一个平面模型,实现了该覆盖的Riemann存在性定理,并明确地界定了该曲线的定义方程及其定义域。
---
英文标题:
《Quantitative Riemann existence theorem over a number field》
---
作者:
Yuri F. Bilu, Marco Strambi
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Given a covering of the projective line with ramifications defined over a number field, we define a plain model of the algebraic curve realizing the Riemann existence theorem for this covering, and bound explicitly the defining equation of this curve and its definition field.
---
PDF链接:
https://arxiv.org/pdf/0809.0345