摘要翻译:
普遍几何的框架允许我们考虑椭圆曲线仿射视图的度量性质,甚至在有限域上也是如此。我们展示了三角形几何的Neuberg立方如何推广到有限域的情形,并给出了椭圆曲线有趣的位势不变量,集中在$\mathbb{F}_{23}$上的一个显式例子。我们还证明了Weierstrass立方的切二次曲线是相同的或不相交的。
---
英文标题:
《Neuberg cubics over finite fields》
---
作者:
N. J. Wildberger
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Metric Geometry 度量几何学
分类描述:Euclidean, hyperbolic, discrete, convex, coarse geometry, comparisons in Riemannian geometry, symmetric spaces
欧氏,双曲,离散,凸,粗几何,黎曼几何的比较,对称空间
--
---
英文摘要:
The framework of universal geometry allows us to consider metrical properties of affine views of elliptic curves, even over finite fields. We show how the Neuberg cubic of triangle geometry extends to the finite field situation and provides interesting potential invariants for elliptic curves, focussing on an explicit example over $\mathbb{F}_{23}$. We also prove that tangent conics for a Weierstrass cubic are identical or disjoint.
---
PDF链接:
https://arxiv.org/pdf/0806.2495


雷达卡



京公网安备 11010802022788号







