摘要翻译:
对于跳跃概率非线性依赖于$F(r,t)$的情形,导出了在$r$位置和时间$t$处找到随机行者的概率$F(r,t)$的Fokker-Planck方程。结果是经典福克-普朗克方程的推广形式,其中也考虑了由于破坏详细平衡而引起的漂移和外场的影响。结果表明,在没有漂移和外场的情况下,描述反常扩散的标度解只有在跳变概率中的非线性为幂律型($sim f^{eta}(r,t)$)时才有可能,在这种情况下,广义福克-普朗克方程归结为著名的多孔介质方程。Monte-Carlo模拟验证了理论结果。
---
英文标题:
《Generalized Diffusion》
---
作者:
James F. Lutsko and Jean Pierre Boon
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Materials Science 材料科学
分类描述:Techniques, synthesis, characterization, structure. Structural phase transitions, mechanical properties, phonons. Defects, adsorbates, interfaces
技术,合成,表征,结构。结构相变,力学性质,声子。缺陷,吸附质,界面
--
一级分类:Physics 物理学
二级分类:Soft Condensed Matter 软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
---
英文摘要:
The Fokker-Planck equation for the probability $f(r,t)$ to find a random walker at position $r$ at time $t$ is derived for the case that the the probability to make jumps depends nonlinearly on $f(r,t)$. The result is a generalized form of the classical Fokker-Planck equation where the effects of drift, due to a violation of detailed balance, and of external fields are also considered. It is shown that in the absence of drift and external fields a scaling solution, describing anomalous diffusion, is only possible if the nonlinearity in the jump probability is of the power law type ($\sim f^{\eta }(r,t)$), in which case the generalized Fokker-Planck equation reduces to the well-known Porous Media equation. Monte-Carlo simulations are shown to confirm the theoretical results.
---
PDF链接:
https://arxiv.org/pdf/711.4487


雷达卡



京公网安备 11010802022788号







