摘要翻译:
给定平面的两条具有同构补的不可约曲线,自然要问平面是否存在一条曲线在另一条曲线上的自同构。这个问题对于一个很大的曲线族有一个肯定的答案,H.Yoshihara猜想它在一般情况下是真的。在任何地面场中,我们都给出了这个猜想的反例。在某些情况下,曲线是同构的,而在另一些情况下,曲线不是同构的;这提供了两种不同类型的反例。最后,我们利用我们的构造来发现仿射曲面的惊人非线性自同构的存在性。
---
英文标题:
《The correspondence between a plane curve and its complement》
---
作者:
J\'er\'emy Blanc
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Given two irreducible curves of the plane which have isomorphic complements, it is natural to ask whether there exists an automorphism of the plane that sends one curve on the other. This question has a positive answer for a large family of curves and H.Yoshihara conjectured that it is true in general. We exhibit counterexamples to this conjecture, over any ground field. In some of the cases, the curves are isomorphic and in others not; this provides counterexamples of two different kinds. Finally, we use our construction to find the existence of surprising non-linear automorphisms of affine surfaces.
---
PDF链接:
https://arxiv.org/pdf/0802.1255


雷达卡



京公网安备 11010802022788号







