摘要翻译:
这项工作的目标是演示使用头戴式可穿戴设备导出的心电图(BCG)信号作为一种可行的身份验证生物特征。卡介苗信号是测量人体由于心脏排出血液而产生的加速度。它是心动周期的特征,可以通过测量一个人四肢的细微运动来无创地得出。本文利用智能眼镜(SEW)上的加速度计和陀螺仪传感器获得的几种版本的卡介苗信号进行验证。将得到的卡介苗信号用于训练卷积神经网络(CNN)作为认证模型,该模型针对每个受试者个性化。我们使用来自12个受试者的数据对我们的认证模型进行了评估,表明在最坏的情况下,我们的方法在训练后立即具有3.5%的等误差率(EER),在大约2个月后有13%的误差率。我们还探索了我们的认证方法对有运动障碍的人的使用。我们对6名非痉挛性脑瘫受试者的单独数据集进行的分析显示,在最糟糕的情况下,训练后即刻的EER为11.2%,大约2个月后为21.6%。
---
英文标题:
《Ballistocardiogram-based Authentication using Convolutional Neural
Networks》
---
作者:
Joshua Hebert, Brittany Lewis, Hang Cai, Krishna K.
Venkatasubramanian, Matthew Provost, Kelly Charlebois
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Quantitative Biology 数量生物学
二级分类:Quantitative Methods 定量方法
分类描述:All experimental, numerical, statistical and mathematical contributions of value to biology
对生物学价值的所有实验、数值、统计和数学贡献
--
---
英文摘要:
The goal of this work is to demonstrate the use of the ballistocardiogram (BCG) signal, derived using head-mounted wearable devices, as a viable biometric for authentication. The BCG signal is the measure of an person's body acceleration as a result of the heart's ejection of blood. It is a characterization of the cardiac cycle and can be derived non-invasively from the measurement of subtle movements of a person's extremities. In this paper, we use several versions of the BCG signal, derived from accelerometer and gyroscope sensors on a Smart Eyewear (SEW) device, for authentication. The derived BCG signals are used to train a convolutional neural network (CNN) as an authentication model, which is personalized for each subject. We evaluate our authentication models using data from 12 subjects and show that our approach has an equal error rate (EER) of 3.5% immediately after training and 13\% after about 2 months, in the worst case. We also explore the use of our authentication approach for people with motor disabilities. Our analysis using a separate dataset of 6 subjects with non-spastic cerebral palsy shows an EER of 11.2% immediately after training and 21.6% after about 2 months, in the worst-case.
---
PDF链接:
https://arxiv.org/pdf/1807.03216


雷达卡



京公网安备 11010802022788号







