楼主: nandehutu2022
385 0

[电气工程与系统科学] 基于非高斯中性向量的脑电信号分类 [推广有奖]

  • 0关注
  • 5粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
69.2521
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24246 点
帖子
4004
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-20

楼主
nandehutu2022 在职认证  发表于 2022-4-10 17:50:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
在脑-机接口系统的设计中,脑电图(EEG)信号的分类是必不可少的部分,也是一项具有挑战性的任务。近年来,由于边缘离散小波变换(mDWT)能够反映脑电信号的瞬态特征,因此mDWT系数被广泛应用于脑电信号的分类中。在我们之前的工作中,我们提出了一个基于超Dirichlet分布的分类器,该分类器利用了mDWT系数的非负和一的特性。该分类器的性能优于现有的基于支持向量机的分类器。本文进一步研究了mDWT系数的中立性。假设mDWT向量系数是一个中立向量,将其非线性转化为一组独立的标量系数。在变换后的特征域上提出了特征选择策略。实验结果表明,该特征选择策略有助于提高分类精度。
---
英文标题:
《Classification of EEG Signal based on non-Gaussian Neutral Vector》
---
作者:
Zhanyu Ma
---
最新提交年份:
2020
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--

---
英文摘要:
  In the design of brain-computer interface systems, classification of Electroencephalogram (EEG) signals is the essential part and a challenging task. Recently, as the marginalized discrete wavelet transform (mDWT) representations can reveal features related to the transient nature of the EEG signals, the mDWT coefficients have been frequently used in EEG signal classification. In our previous work, we have proposed a super-Dirichlet distribution-based classifier, which utilized the nonnegative and sum-to-one properties of the mDWT coefficients. The proposed classifier performed better than the state-of-the-art support vector machine-based classifier. In this paper, we further study the neutrality of the mDWT coefficients. Assuming the mDWT vector coefficients to be a neutral vector, we transform them non-linearly into a set of independent scalar coefficients. Feature selection strategy is proposed on the transformed feature domain. Experimental results show that the feature selection strategy helps improving the classification accuracy.
---
PDF链接:
https://arxiv.org/pdf/1808.00814
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:电信号 coefficients based signals transform 精度

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-20 23:49