摘要翻译:
因子分析被证明是一种在动态PET图像中提取组织时间-活动曲线(TACs)的相关工具,因为它允许对数据进行无监督分析。只有考虑到合适的噪声统计量,才有可能得到可靠和可解释的结果。然而,尽管计数率具有泊松性质,但重建的动态PET图像中的噪声很难表征。不是显式建模的噪声分布,这项工作提出了研究相关性的几个发散度量将使用在一个因素分析框架内。为此,在其他应用领域中广泛使用的β-散度法,被用来设计三种不同因子模型中的数据拟合项。在高斯、泊松和伽马分布噪声范围内,对不同的β$值下的算法性能进行了评估。在两种不同类型的合成图像和一幅真实图像上得到的结果表明,应用非标准值$\beta$来改进因子分析是有意义的。
---
英文标题:
《Factor analysis of dynamic PET images: beyond Gaussian noise》
---
作者:
Yanna Cruz Cavalcanti, Thomas Oberlin, Nicolas Dobigeon, C\'edric
F\'evotte, Simon Stute, Maria-Joao Ribeiro, Clovis Tauber
---
最新提交年份:
2019
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Physics 物理学
二级分类:Data Analysis, Statistics and Probability 数据分析、统计与概率
分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties.
物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
Factor analysis has proven to be a relevant tool for extracting tissue time-activity curves (TACs) in dynamic PET images, since it allows for an unsupervised analysis of the data. Reliable and interpretable results are possible only if considered with respect to suitable noise statistics. However, the noise in reconstructed dynamic PET images is very difficult to characterize, despite the Poissonian nature of the count-rates. Rather than explicitly modeling the noise distribution, this work proposes to study the relevance of several divergence measures to be used within a factor analysis framework. To this end, the $\beta$-divergence, widely used in other applicative domains, is considered to design the data-fitting term involved in three different factor models. The performances of the resulting algorithms are evaluated for different values of $\beta$, in a range covering Gaussian, Poissonian and Gamma-distributed noises. The results obtained on two different types of synthetic images and one real image show the interest of applying non-standard values of $\beta$ to improve factor analysis.
---
PDF链接:
https://arxiv.org/pdf/1807.11455


雷达卡



京公网安备 11010802022788号







