《Multiple Wavelet Coherency Analysis and Forecasting of Metal Prices》
---
作者:
Emre Kahraman and Gazanfer \\\"Unal
---
最新提交年份:
2016
---
英文摘要:
The assessment of co-movement among metals is crucial to better understand the behaviors of the metal prices and the interactions with others that affect the changes in prices. In this study, both Wavelet Analysis and VARMA (Vector Autoregressive Moving Average) models are utilized. First, Multiple Wavelet Coherence (MWC), where Wavelet Analysis is needed, is utilized to determine dynamic correlation time interval and scales. VARMA is then used for forecasting which results in reduced errors. The daily prices of steel, aluminium, copper and zinc between 10.05.2010 and 29.05.2014 are analyzed via wavelet analysis to highlight the interactions. Results uncover interesting dynamics between mentioned metals in the time-frequency space. VARMA (1,1) model forecasting is carried out considering the daily prices between 14.11.2011 and 16.11.2012 where the interactions are quite high and prediction errors are found quite limited with respect to ARMA(1.1). It is shown that dynamic co-movement detection via four variables wavelet coherency analysis in the determination of VARMA time interval enables to improve forecasting power of ARMA by decreasing forecasting errors.
---
中文摘要:
评估金属之间的协同运动对于更好地理解金属价格的行为以及与影响价格变化的其他因素的相互作用至关重要。在这项研究中,小波分析和VARMA(向量自回归移动平均)模型都被使用。首先,利用需要小波分析的多小波相干度(MWC)确定动态相关时间间隔和尺度。然后使用VARMA进行预测,从而减少误差。通过小波分析对2010年5月10日至2014年5月29日期间的钢铁、铝、铜和锌的日价格进行分析,以突出相互作用。结果揭示了上述金属在时频空间中有趣的动力学。VARMA(1,1)模型预测考虑了2011年11月14日至2012年11月16日之间的每日价格,其中相互作用非常高,预测误差相对于ARMA(1.1)非常有限。结果表明,在确定VARMA时间间隔时,通过四变量小波相干分析进行动态共动检测,可以通过减少预测误差来提高ARMA的预测能力。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->
Multiple_Wavelet_Coherency_Analysis_and_Forecasting_of_Metal_Prices.pdf
(1.07 MB)


雷达卡



京公网安备 11010802022788号







