《Unbiased Monte Carlo Simulation of Diffusion Processes》
---
作者:
Louis Paulot
---
最新提交年份:
2016
---
英文摘要:
Monte Carlo simulations of diffusion processes often introduce bias in the final result, due to time discretization. Using an auxiliary Poisson process, it is possible to run simulations which are unbiased. In this article, we propose such a Monte Carlo scheme which converges to the exact value. We manage to keep the simulation variance finite in all cases, so that the strong law of large numbers guarantees the convergence. Moreover, the simulation noise is a decreasing function of the Poisson process intensity. Our method handles multidimensional processes with nonconstant drifts and nonconstant variance-covariance matrices. It also encompasses stochastic interest rates.
---
中文摘要:
由于时间离散化,扩散过程的蒙特卡罗模拟通常会在最终结果中引入偏差。使用辅助泊松过程,可以进行无偏模拟。在本文中,我们提出了这样一种蒙特卡罗格式,它收敛到精确值。我们设法在所有情况下保持模拟方差有限,因此强大的数定律保证了收敛性。此外,模拟噪声是泊松过程强度的递减函数。我们的方法处理具有非恒定漂移和非恒定方差协方差矩阵的多维过程。它还包括随机利率。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->
Unbiased_Monte_Carlo_Simulation_of_Diffusion_Processes.pdf
(607.22 KB)


雷达卡



京公网安备 11010802022788号







