楼主: 可人4
1012 28

[量化金融] 矩阵值因子模型中的长期最优投资 [推广有奖]

  • 0关注
  • 2粉丝

会员

学术权威

76%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
48.9843
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24465 点
帖子
4070
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
可人4 在职认证  发表于 2022-5-11 10:48:46 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文标题:
《Long Term Optimal Investment in Matrix Valued Factor Models》
---
作者:
Scott Robertson, Hao Xing
---
最新提交年份:
2014
---
英文摘要:
  Long term optimal investment problems are studied in a factor model with matrix valued state variables. Explicit parameter restrictions are obtained under which, for an isoelastic investor, the finite horizon value function and optimal strategy converge to their long-run counterparts as the investment horizon approaches infinity. This convergence also yields portfolio turnpikes for general utilities. By using results on large time behaviour of semi-linear partial differential equations, our analysis extends affine models, where the Wishart process drives investment opportunities, to a non-affine setting. Furthermore, in the affine setting, an example is constructed where the value function is not exponentially affine, in contrast to models with vector-valued state variables.
---
中文摘要:
研究了具有矩阵值状态变量的因子模型中的长期最优投资问题。对于等弹性投资者,当投资期限接近无穷大时,有限期价值函数和最优策略收敛到它们的长期对应项。这种趋同还产生了一般公用事业的投资组合收费公路。通过使用关于半线性偏微分方程大时间行为的结果,我们的分析将Wishart过程驱动投资机会的仿射模型扩展到非仿射环境。此外,在仿射设置中,与具有向量值状态变量的模型相比,构造了一个值函数不是指数仿射的示例。
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Mathematical Finance        数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--

---
PDF下载:
--> Long_Term_Optimal_Investment_in_Matrix_Valued_Factor_Models.pdf (429.67 KB)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Mathematical Quantitative Differential Restrictions mathematica

沙发
能者818 在职认证  发表于 2022-5-11 10:48:51
矩阵值因子模型的长期最优投资Cott ROBERTSON和HAO XINGAbstract。研究了具有矩阵值状态变量的因子模型中的长期最优投资问题。得到了明确的参数限制,对于等弹性投资者,随着投资期限的接近,有限期价值函数和最优策略收敛到其长期对应项。这种趋同还产生了一般公用事业的投资组合收费标准。通过使用关于半线性偏微分方程大时间行为的结果,我们的分析将Wishart过程驱动投资机会的有效模型扩展到了非有效环境。此外,在函数设置中,构造了一个示例,其中valuefunction不是指数函数,这与具有向量值状态变量的模型不同。1.引言当投资机会随机且市场不完全时,投资组合选择问题中的最优策略很少采用明确形式s。困难的主要来源是套期保值需求严重依赖于投资期限。这种困难会促使近似的最优策略,考虑到长期运行限制,会出现一个有用的近似值。这种近似使最优策略具有可操作性,并阐明了投资者偏好、潜在经济因素和动态资产需求之间的关系。

藤椅
大多数88 在职认证  发表于 2022-5-11 10:48:54
长期近似通常有两种形式:第一,长期最优投资或风险敏感控制问题寻求确定等弹性公用事业的增长最优政策;其次,portfolioturnpike问题寻求将一般公用事业的最优策略与相应的等弹性公用事业的最优策略联系起来。本文在一个多资产因素模型中研究了长期最优投资和投资组合收费公路问题,其中状态变量取正定义空间中的值。这类模型推广了[8,27]中的Wishart模型(以及许多其他模型),该模型已成功应用于数学金融中的广泛问题。除了确定最佳的长期政策和巡回收费公路项目外,我们还特别关注将有限期和长期问题联系起来。在这里,我们的目标是提供条件,使有限期的最佳政策与其长期对应政策趋同。这个方向上的积极结果对于验证长期分析是必要的。虽然启发法表明了趋同,但从技术角度来看,长期政策是否会作为有限期政策的限制而出现,这一点尚不明确。对于等弹性效用,风险敏感控制或长期最优投资,问题旨在使预期效用增长率最大化。许多作者已经解决了这个问题:日期:2018年1月21日。关键词和短语。投资组合选择,长期,风险敏感控制,投资组合收费公路,威斯哈特过程。2矩阵值因子模型的长期最优投资,例如[5,6,4,17,18,35,16,39,13,23,26]。在这些研究中,分析了一个遍历的Hamilton-JacobiBellman(HJB)方程。

板凳
nandehutu2022 在职认证  发表于 2022-5-11 10:48:58
该遍历方程通常通过启发式推理获得,其中首先推导出有限水平HJB方程,然后推测在长水平上(约化)值函数分解为空间分量和时间增长分量之和。因此,如果v(T,·)表示有限水平值函数,则长运行值函数的形式为^λT+^v(·)。然后,遍历HJB方程通过将Latter函数代入有限视界HJB方程。上述启发式推导表明,有限期和有限期最优投资问题在许多方面是平行的。最重要的是将这两类问题联系起来。随着投资期限T的接近,期限价值函数v(T,·)是否收敛到其长期模拟^λT+^v(·)?如果是,在什么意义上?有限期问题的最优策略是否收敛到长期极限?如前所述,对这些问题的有效回答验证了风险敏感控制研究的直觉,并提供了有限期和长期问题之间的一致性。远离等弹性情形,投资组合收费公路为一般效用函数的最优策略提供了另一种近似。从定性上讲,收费公路定理表明,在一个不断增长的市场(即无风险资产趋于成熟的市场),随着投资范围的扩大,通用公用事业的最佳交易策略在任何有限的时间窗口内收敛到其等弹性对应物的最佳交易策略(有关“对应物”的精确公式,请参见假设2.8)。

报纸
何人来此 在职认证  发表于 2022-5-11 10:49:02
在[38]中,收费公路定理首次针对风险容忍度很高的公用事业进行了研究,并得到了广泛的研究:特别是我们提到[36、44、25、30、10、32、29、15、14],其中收费公路定理在不同的通用性水平上得到了改进。对于风险敏感控制和收费公路近似值,我们分别在报表2.7和2.10中总结了有限期和长期期问题之间的关系。这些声明的验证使具有长期视野的投资者能够用明确的长期近似值取代其最优但隐含的策略,从而将其财富和效用损失降至最低,同时提供相当大的可操作性。表2.7和2.10中的每一项都已在[22]的因子模型中得到证明,该模型具有单变量状态变量以及可对冲和不可对冲冲击的恒定相关性。本文将这些结果推广到一个多变量的环境中,从而允许统计利率、波动率和相关性。这里,在我们的主要结果,命题3.2和定理3.10,3.12中,我们在模型系数上提供了明确的参数假设,在模型系数下,陈述2.7和2.10都成立。如前所述,我们关注一个f因子模型,其中状态变量为矩阵值。这是通过考虑Wishart过程(参见[7]和下面的示例2.4)实现的,该过程已应用于期权定价(参见[20、21、11、12])。[8]率先将其应用于投资组合优化,强调了多元状态变量对套期保值需求的影响。特别是,使用实际相关参数,其中第B.3节中的数值示例表明,当投资期限超过5年时,套期保值需求收敛到稳态水平。我们的结果证实了这一观察结果。

地板
可人4 在职认证  发表于 2022-5-11 10:49:09
在[27]中,投资组合优化问题通过矩阵Riccati微分方程在Wishart情况下求解。在[2]中,研究了对数效用,在[42]中讨论了差异定价。矩阵值因子模型的长期最优投资3与上述利用Wishart过程有效结构的结果相比,我们的结果依赖于梯度中具有二次非线性的偏微分方程的大时间渐近分析。使用[43]中开发的技术,我们能够考虑非有效模型,因此讨论一般矩阵值状态变量,如第2.1节所述。此外,可以处理状态变量和风险资产之间的随机相关性,需要一个特殊的(常数)相关性结构来确保有效结构。此外,当我们的分析应用于一个有效的模型时,产生了新的见解:我们构建了一个反例(例3.4),来反驳长期以来的信念,即最优策略在一个有效的模型中是有效的。实际上,本例中的模型是一个函数,但相关的值函数不是指数函数,因此最优策略不是一个函数。当状态变量的维数大于风险资产的数目时,就会发生这种情况,这是由于矩阵产品的非单调性。本文的组织结构如下:在第2节介绍了模型和陈述2.7和2.10之后,第3节给出了主要结果。为了便于说明,一般结果首先在状态变量遵循第3.1节中的Wishart过程时给出。在这里,投资模型可能有效,也可能无效,这取决于资产漂移和协方差。

7
nandehutu2022 在职认证  发表于 2022-5-11 10:49:13
命题3。2提供了简单、温和的参数限制(尤其是在投资者的风险厌恶程度超过alogarithmic investor的情况下),主要结果遵循这些参数限制。当模型进一步具体化为[8,27]中考虑的“经典”Wishart模型时,建议3.3明确确定了长期限制政策,示例3.4构建了非指数性的必要示例。在考虑Wishart情况后,第3.2节给出了一般矩阵值状态变量的主要结果:长期极限结果见定理3.10,收费公路结果见定理3.12。所有的证明都遵从附录A、B和C。最后,我们总结了本文中使用的几种符号:oMd×kd表示d×k矩阵的空间,其中Md:=Md×d。对于x∈ Md×k,用x′表示x的转置∈ Md,用Tr(x)表示x的轨迹,kxk=pTr(x′x)。福克斯,y∈ Md,x和y的克罗内克积用x表示 Y∈ Md.用Md中的1身份矩阵和每个分量的1维向量表示Sd表示d×d对称矩阵的空间,Sd++表示正有限元的锥。为了x∈ Sd++,表示为√x唯一的元素y∈ Sd++使得y=x。对于x,y∈ Sd++,x≥ 当x- y为正半限定值对于E Md×k,F Mm×n和γ∈ (0,1),用C表示l,γ(E;F)的空间l 从E到F的连续可微函数,其阶导数高达l 指数γ为2的局部H¨older连续。设为(Ohm, (Ft)t≥0,F,P)是具有(Ft)t的过滤概率空间≥0a正确的连续过滤。在[22]中进行处理后,所有N-可忽略集(参见[3,定义1.3.23]和[40])都被纳入F。

8
能者818 在职认证  发表于 2022-5-11 10:49:19
这样一个完整的围栏,尽管≥ 0,那个(Ohm, (英尺)0≤T≤T、 FT,P)满足通常条件。考虑一个有一个无风险资产和n个风险资产(S,…,Sn)的财务模型。投资机会由Sd++值的状态变量X驱动。在矩阵值因子模型中记录4项长期最优投资的动态之前,有必要引入状态变量X,因为X的动态涉及矩阵符号。2.1. 一个Sd++值的状态变量。设B=(Bij)i,j=1,。。。上的Md值布朗运动(Ohm, (Ft)t≥0,F,P)。状态变量X具有动力学(2.1)dXt=b(Xt)dt+F(Xt)dBtG(Xt)+G(Xt)′dB′tF(Xt)′,X∈ Sd++。给你,b∈ C1,γ(Sd++;Sd)和F,G∈ C2,γ(Sd++;Md)是给定的函数。我们需要b,F,G来证明X具有唯一的非爆炸性stron G溶液,即PxhXt∈ Sd++, T≥ 0i=1,对于所有x∈ Sd++,其中px是X=X a.s.的概率。。为了通过限制b、F和G来执行该要求,使用了[37]的结果和符号。即定义(2.2)f(x):=f′(x)和g(x):=g′g(x),x∈ Sd++。接下来,给定b,f,g:Sd++→ Sdandδ∈ R、 定义Hδ:Sd++→ R通过(2.3)Hδ(x;b):=Trb x-1.- (1+δ)Tr外汇-1gx-1.- Trf x-1.TrGx-1., 十、∈ Sd++。在这里,我们省略了b、f、g中的函数参数,但它明确地识别了Hδ中的d函数b,因为在续集中,Hδ将与各种b一起使用。要理解Hδ,请注意,如果(2.1)中的X有一个满足(2.1)的强解,则^o’s公式意味着log(det(Xt))的动力学漂移是H(Xt;b)。因此,下面的假设确保(2.1)中的X既不是范数爆炸,也不是退化确定的,因此具有唯一的全局强解(Xt)t∈Sd++上的R+,cf。

9
能者818 在职认证  发表于 2022-5-11 10:49:34
[37,定理3.4]。假设2.1。i) G′ F和b是局部Lipschitz和线性增长。ii)infx∈Sd++H(x;b)>-∞.备注2.2。使用[28,第4.2节]进行的直接计算表明 F(x)- G′ F(y)k≤ 2.千克(x)kkF(x)- F(y)k+kF(y)kkG(x)- G(y)k,千克 F(x)k=kF(x)kkG(x)k=Tr(F)Tr(g),对于x,y∈ Sd++。因此,G′F将是局部Lipschitz,一旦F和G是局部L ipschitz和KF(x)kkG(x)k,F将是线性增长的≤ C(1+kxk)或等效于Tr(f)Tr(g)≤ C(1+kxk)。假设2.1建立了(2.1)的适定性。下一个假设意味着X的波动性在Sd++内部是非退化的。假设2.3。每x∈ Sd++,f(x)>0和g(x)>0。实际上,请注意(2.1)是以下g系统的缩写:dXijt=bij(Xt)dt+dXk,l=1F(Xt)ikdBkltG(Xt)lj+dXk,l=1F(Xt)jkdBkltG(Xt)li,i,j=1。。。,d、 矩阵值因子模型5i,j=1。。。,定义矩阵aij:Sd++→ Mdbyaijkl(x):=(FikGlj+FjkGli)(x),k,l=1。。。,d、 x∈ Sd++。然后上述系统采用dxijt=bij(Xt)dt+Tr的形式aij(Xt)dB′t.然后[43,引理5.1]表明,在假设2.3下,对于任何x∈ Sd++与θ∈ Sd,(2.4)dXi,j,k,l=1θijTraij(akl)\'(x) θkl=4Tr(f(x)θg(x)θ)≥ c(x)kθk,对于某些常数c(x)>0。例2.4。要记住的一个重要例子是当X是Wishart进程时,参见[7]:(2.5)dXt=LL′+KXt+XtK′dt+pXtdBt∧′+dB′tpXt,其中K,L,∧∈ Md。那么,当(2.6)LL′时,假设2.1和2.3都满足≥ (d+1)∧∧′>0。实际上,这里b(x)=LL′+Kx+xK′,f(x)=x,dg(x)=∧∧′。使用备注2.2可以得出b,G′F是局部Lipschitz和线性增长。此外,计算表明H(x;b)=Tr(LL′)- (d+1)∧∧′x-1.+2Tr(K)。因此,(2.6)中的第一个不等式意味着H(x;b)≥ Sd++上的2Tr(K)和假设2.1适用。

10
何人来此 在职认证  发表于 2022-5-11 10:49:38
假设2.3很容易遵循(2.6)中的第二个不等式。财务模型。有了固定的符号并建立了状态变量的适定性,我们现在可以定义财务模型。如上所述,有一个无风险资产和n个风险资产(S,…,Sn),其动态由DSTST=r(Xt)dt,S=1,(2.7)dSitSit=(r(Xt)+ui(Xt))dt+mXj=1σij(Xt)dZjt,Si>0,i=1。。。,n、 (2.8)这里,r∈ Cγ(Sd++;R),u∈ C1,γ(Sd++;Rn),σ∈ C2,γ(Sd++;Mn×m)和Z=(Z,…,Zm)是一个rm值布朗运动。σ是满秩的,并且存在风险的市场价格,即ν:Sd++→ Rn通过以下假设确保Sd++上的u=σ′ν:假设2.5。i) 当m>n时,∑(x):=x的∑∑′(x)>0∈ Sd++。那么ν:=-1u.ii)当m<n时,x的σ′σ(x)>0∈ Sd++,并且存在ν∈ C1,γ(Sd++;Rn),使得u=∑ν。iii)当m=n时,x的∑(x)>0∈ Sd++与σ=√Σ. 这里再次表示,ν=∑-1u.为了考虑资产收益和状态变量之间潜在的随机瞬时相关性,我们根据驱动X的布朗运动B和独立的RMW值布朗运动W来定义Z。具体来说,让C∈ C2,γ(Sd++;Mm×d)和ρ∈ C2,γ(Sd++;Rd)是矩阵值因子模型中的长期最优投资。ρ′ρ(x)CC′(x)≤ 每x 1个∈ Sd++。D组:=√M-ρ′ρCC′∈ C2,γ(Sd++;Sd)。我们可以通过(2.9)Zjt:=dXk,l=1ZtCjk(Xu)dBkluρl(Xu)+mXk=1ZtDjk(Xu)dWku,t定义Z≥ 0,j=1。。。,m、 通过构造,Z是m维布朗运动。此外,对于1,Z和B之间的瞬时相关性为dhZj,Bklit=Cjk(Xt)ρl(Xt)dt≤ J≤ m、 一,≤ k、 l≤ d、 特别是当m=d,C=1d和ρ∈ Rdi常数,dhZi,Bjlit=δijρldt,其中δij=1表示i=j,其他为0。[8,27,2,42]中假设了这种特殊的相关性结构。

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-28 20:20