|
此外,由于(b*,c*) =(yg(Y*,Z*),zg(Y*,Z*)), 根据(1.4),g(Y*,Z*) = b*Y*+ c*· Z*-g级*(b)*,c*).亨西*t=F+X^π*T-ZTt(b*Y*+ c*·Z*-g级*(b)*,c*))ds公司-ZTtZ公司*·数据仓库。bmo空间在bmo测度变化下是不变的,参见[25,定理3.6]。自(b)起*,c*) 在Pgand^π中*在《圣经》中,我们推断*= E“Mb*c*F+X^π*+ZTMb公司*c*g级*(b)*,c*)dt#。至于定理的其余部分,因为(Y*,Z*) 在A(F+X^π)中*T) ,我们留下来证明,对于^bmo中的任意^π和A(F+X^πT)中的任意(Y,Z),Y*≥ Y、 事实上,它将遵循*≥ A(F+X^π)中的每个(Y,Z)的Y*T) 因此Y*= U(F+X^π)*T) ;oY*≥ Y对于A(F+X^πT)中的每一个(Y,Z)和每一个^πin^bmo,表示Y*≥ U(F+X^πT)前向^πin^bmo。因此,设^π为^bmo。在不丧失一般性的情况下,我们可以假设A(F+X^πT)是非空的。设(Y,Z)为A(F+X^πT),表示为Y:=Y-Y*, Z:=Z-Z*和^π=^π-^π*. 根据标记2.1,可以得出g(Y,Z)-g(Y*,Z*) ≥b*Y+c*·Z、 因此Ys公司≤ 年初至今-Zts[g(Y,Z)-g(Y*,Z*)]杜邦-Zts公司Z·dW≤ 年初至今-Zts[b*Y+c*·Z] 杜邦-Zts公司Z·dW。通过变量ˇY=Mb的变化*c*Y和ˇZ=Mb*c*(Z-Y c公司*), 因此,(Y,Z)满足了≤ 兆字节*c*TX^πT-X^π*T-ZTtˇZ·dW=E“Mb*c*TZT^π·d^W^θ!Ft#sinceRˇZ·dW是一个鞅,是两个鞅的差;(b)*,c*) 在第页,但c*和b*满足引理3.3的条件,可以得出▄V尤其在▄bmo中。因此,W(^θ),-V):=(^W+R^θdt,^W-RV dt)=(^W^θ,~W-RV dt)是m测度p(θ)下的布朗运动,-V)。自ˇY=Y、 对于t=0,根据(3.4),我们有Y=ˇY≤ E“Mb*c*坦桑尼亚先令^π·d^W^θ#=E“exp-ZTVdt-ZTθdt+ZTV·dW-ZT^θ·d^W-UZT公司^π·d^W^θ#=经验(-U) E(^θ),-V)“ZT^π·d^W^θ#=0。因此,Y*≥ 这是证据的结尾。备注3.4。
|