《Tensor Representation in High-Frequency Financial Data for Price Change
Prediction》
---
作者:
Dat Thanh Tran, Martin Magris, Juho Kanniainen, Moncef Gabbouj,
Alexandros Iosifidis
---
最新提交年份:
2017
---
英文摘要:
Nowadays, with the availability of massive amount of trade data collected, the dynamics of the financial markets pose both a challenge and an opportunity for high frequency traders. In order to take advantage of the rapid, subtle movement of assets in High Frequency Trading (HFT), an automatic algorithm to analyze and detect patterns of price change based on transaction records must be available. The multichannel, time-series representation of financial data naturally suggests tensor-based learning algorithms. In this work, we investigate the effectiveness of two multilinear methods for the mid-price prediction problem against other existing methods. The experiments in a large scale dataset which contains more than 4 millions limit orders show that by utilizing tensor representation, multilinear models outperform vector-based approaches and other competing ones.
---
中文摘要:
如今,随着收集到的大量贸易数据的可用性,金融市场的动态对高频交易者既是挑战也是机遇。为了利用高频交易(HFT)中资产的快速、细微移动,必须提供一种基于交易记录分析和检测价格变化模式的自动算法。金融数据的多通道时间序列表示自然建议使用基于张量的学习算法。在这项工作中,我们研究了两种多线性方法对中间价格预测问题的有效性。在一个包含400多万个极限阶的大规模数据集上的实验表明,通过使用张量表示,多线性模型的性能优于基于向量的方法和其他竞争方法。
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science 计算机科学
二级分类:Numerical Analysis 数值分析
分类描述:cs.NA is an alias for math.NA. Roughly includes material in ACM Subject Class G.1.
cs.na是Math.na的别名。大致包括ACM学科类G.1的材料。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
---
PDF下载:
-->
Tensor_Representation_in_High-Frequency_Financial_Data_for_Price_Change_Prediction.pdf
(168.42 KB)


雷达卡



京公网安备 11010802022788号







