《Listening to Chaotic Whispers: A Deep Learning Framework for
News-oriented Stock Trend Prediction》
---
作者:
Ziniu Hu, Weiqing Liu, Jiang Bian, Xuanzhe Liu, Tie-Yan Liu
---
最新提交年份:
2019
---
英文摘要:
Stock trend prediction plays a critical role in seeking maximized profit from stock investment. However, precise trend prediction is very difficult since the highly volatile and non-stationary nature of stock market. Exploding information on Internet together with advancing development of natural language processing and text mining techniques have enable investors to unveil market trends and volatility from online content. Unfortunately, the quality, trustworthiness and comprehensiveness of online content related to stock market varies drastically, and a large portion consists of the low-quality news, comments, or even rumors. To address this challenge, we imitate the learning process of human beings facing such chaotic online news, driven by three principles: sequential content dependency, diverse influence, and effective and efficient learning. In this paper, to capture the first two principles, we designed a Hybrid Attention Networks to predict the stock trend based on the sequence of recent related news. Moreover, we apply the self-paced learning mechanism to imitate the third principle. Extensive experiments on real-world stock market data demonstrate the effectiveness of our approach.
---
中文摘要:
股票走势预测对寻求股票投资利润最大化起着至关重要的作用。然而,由于股票市场的高度波动性和非平稳性,精确的趋势预测非常困难。互联网上信息的爆炸式增长,以及自然语言处理和文本挖掘技术的不断发展,使投资者能够从在线内容中揭示市场趋势和波动性。不幸的是,与股市相关的在线内容的质量、可信度和全面性差别很大,其中很大一部分是低质量的新闻、评论甚至谣言。为了应对这一挑战,我们模仿了人类面对如此混乱的在线新闻的学习过程,这一过程由三个原则驱动:连续的内容依赖性、多样的影响以及有效和高效的学习。在本文中,为了抓住前两个原则,我们设计了一个混合注意网络,根据最近的相关新闻序列预测股票趋势。此外,我们还应用了自定进度学习机制来模拟第三个原则。对真实股市数据的大量实验证明了我们方法的有效性。
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Social and Information Networks 社会和信息网络
分类描述:Covers the design, analysis, and modeling of social and information networks, including their applications for on-line information access, communication, and interaction, and their roles as datasets in the exploration of questions in these and other domains, including connections to the social and biological sciences. Analysis and modeling of such networks includes topics in ACM Subject classes F.2, G.2, G.3, H.2, and I.2; applications in computing include topics in H.3, H.4, and H.5; and applications at the interface of computing and other disciplines include topics in J.1--J.7. Papers on computer communication systems and network protocols (e.g. TCP/IP) are generally a closer fit to the Networking and Internet Architecture (cs.NI) category.
涵盖社会和信息网络的设计、分析和建模,包括它们在联机信息访问、通信和交互方面的应用,以及它们作为数据集在这些领域和其他领域的问题探索中的作用,包括与社会和生物科学的联系。这类网络的分析和建模包括ACM学科类F.2、G.2、G.3、H.2和I.2的主题;计算应用包括H.3、H.4和H.5中的主题;计算和其他学科接口的应用程序包括J.1-J.7中的主题。关于计算机通信系统和网络协议(例如TCP/IP)的论文通常更适合网络和因特网体系结构(CS.NI)类别。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->
Listening_to_Chaotic_Whispers:_A_Deep_Learning_Framework_for_News-oriented_Stock.pdf
(3.2 MB)


雷达卡



京公网安备 11010802022788号







