《Viable Insider Markets》
---
作者:
Olfa Draouil, Bernt {\\O}ksendal
---
最新提交年份:
2018
---
英文摘要:
We consider the problem of optimal inside portfolio $\\pi(t)$ in a financial market with a corresponding wealth process $X(t)=X^{\\pi}(t)$ modelled by \\begin{align}\\label{eq0.1} \\begin{cases} dX(t)&=\\pi(t)X(t)[\\alpha(t)dt+\\beta(t)dB(t)]; \\quad t\\in[0, T] X(0)&=x_0>0, \\end{cases} \\end{align} where $B(\\cdot)$ is a Brownian motion. We assume that the insider at time $t$ has access to market information $\\varepsilon_t>0$ units ahead of time, in addition to the history of the market up to time $t$. The problem is to find an insider portfolio $\\pi^{*}$ which maximizes the expected logarithmic utility $J(\\pi)$ of the terminal wealth, i.e. such that $$\\sup_{\\pi}J(\\pi)= J(\\pi^{*}), \\text {where } J(\\pi)= \\mathbb{E}[\\log(X^{\\pi}(T))].$$ The insider market is called \\emph{viable} if this value is finite. We study under what inside information flow $\\mathbb{H}$ the insider market is viable or not. For example, assume that for all $t<T$ the insider knows the value of $B(t+\\epsilon_t)$, where $t + \\epsilon_t \\geq T$ converges monotonically to $T$ from above as $t$ goes to $T$ from below. Then (assuming that the insider has a perfect memory) at time $t$ she has the inside information $\\mathcal{H}_t$, consisting of the history $\\mathcal{F}_t$ of $B(s); 0 \\leq s \\leq t$ plus all the values of Brownian motion in the interval $[t+\\epsilon_t, \\epsilon_0]$, i.e. we have the enlarged filtration \\begin{equation}\\label{eq0.2} \\mathbb{H}=\\{\\mathcal{H}_t\\}_{t\\in[0.T]},\\quad \\mathcal{H}_t=\\mathcal{F}_t\\vee\\sigma(B(t+\\epsilon_t+r),0\\leq r \\leq \\epsilon_0-t-\\epsilon_t), \\forall t\\in [0,T]. \\end{equation} Using forward integrals, Hida-Malliavin calculus and Donsker delta functionals we show that if $$\\int_0^T\\frac{1}{\\varepsilon_t}dt=\\infty,$$ then the insider market is not viable.
---
中文摘要:
我们考虑金融市场中的最优内部投资组合$\\pi(t)$问题,其相应的财富过程$X(t)=X ^{\\pi}(t)$由\\ begin{align}\\ label{eq0.1}\\ begin{cases}dX(t)&=\\ pi(t)X(t)[\\ alpha(t)dt+\\ beta(t)dB(t)]建模;\\四元t在[0,t]X(0)&=X\\u 0>0中,{cases}\\ end{align},其中$B(\\cdot)$是布朗运动。我们假设,除了截至时间$t$的市场历史记录外,时间$t$的内幕人士还可以提前获得市场信息$varepsilon\\u t>0$。问题是找到一个内部投资组合$\\pi ^{*}$,它最大化了终端财富的预期对数效用$\\J(\\pi)$,即$\\sup{\\pi}J(\\pi)=J(\\pi ^{*}),\\text{其中}J(\\pi)=\\mathbb{e}[\\log(X ^{\\pi}(T))]。$$如果该值是有限的,则内幕市场称为“可行的”。我们研究在什么样的内幕信息流下,内幕市场是否可行。例如,假设对于所有的$t<t$,内幕人士知道$B(t+\\εt)$的值,其中$t+\\εt\\geq t$从上面单调收敛到$t$,因为$t$从下面收敛到$t$。然后(假设知情者拥有完美的记忆)在时间$t$时,她拥有内幕信息$\\mathcal{H}U t$,由历史$\\mathcal{F}U t$组成$B(s);0\\leq s\\leq t$加上区间$[t+\\epsilon\\u t,\\epsilon\\u 0]$中布朗运动的所有值,即我们有扩大的过滤\\begin{等式}\\label{eq0.2}\\mathbb{H}\\u t}\\u{t\\in[0.t],\\quad\\mathcal{H}\\u t=\\mathca{F}\\u t\\vee\\sigma(B(t+\\epsilon\\u t+r),0\\leq r\\leq\\epsilon\\u 0-t-\\epsilon\\u t),对于所有t\\in[0,t]。\\结束{方程}使用前向积分、Hida Malliavin微积分和Donsker delta泛函,我们表明,如果$$\\int\\u 0 ^ T\\frac{1}{\\varepsilon\\u T}dt=\\infty,$$,则内部市场不可行。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
---
PDF下载:
-->
Viable_Insider_Markets.pdf
(196.61 KB)


雷达卡



京公网安备 11010802022788号







