英文标题:
《Indexed Markov Chains for financial data: testing for the number of
states of the index process》
---
作者:
Guglielmo D\'Amico, Ada Lika, Filippo Petroni
---
最新提交年份:
2018
---
英文摘要:
A new branch based on Markov processes is developing in the recent literature of financial time series modeling. In this paper, an Indexed Markov Chain has been used to model high frequency price returns of quoted firms. The peculiarity of this type of model is that through the introduction of an Index process it is possible to consider the market volatility endogenously and two very important stylized facts of financial time series can be taken into account: long memory and volatility clustering. In this paper, first we propose a method for the optimal determination of the state space of the Index process which is based on a change-point approach for Markov chains. Furthermore we provide an explicit formula for the probability distribution function of the first change of state of the index process. Results are illustrated with an application to intra-day prices of a quoted Italian firm from January $1^{st}$, 2007 to December $31^{st}$ 2010.
---
中文摘要:
在最近的金融时间序列建模文献中,基于马尔可夫过程的一个新分支正在发展。本文采用指数马尔可夫链对上市公司的高频价格收益进行建模。这类模型的特点是,通过引入指数过程,可以内生性地考虑市场波动性,并且可以考虑金融时间序列的两个非常重要的类型化事实:长记忆和波动性聚类。本文首先提出了一种基于马尔可夫链变点方法的指数过程状态空间的优化确定方法。此外,我们还提供了指数过程第一次状态变化的概率分布函数的显式公式。结果以一家意大利上市公司2007年1月1日至2010年12月31日的日内价格为例进行了说明。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







