楼主: kedemingshi
913 26

[量化金融] 季节性随机波动与农业中的萨缪尔森效应 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
89.2735
学术水平
0 点
热心指数
8 点
信用等级
0 点
经验
24665 点
帖子
4127
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
kedemingshi 在职认证  发表于 2022-6-9 17:21:40 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文标题:
《Seasonal Stochastic Volatility and the Samuelson Effect in Agricultural
  Futures Markets》
---
作者:
Lorenz Schneider and Bertrand Tavin
---
最新提交年份:
2018
---
英文摘要:
  We introduce a multi-factor stochastic volatility model for commodities that incorporates seasonality and the Samuelson effect. Conditions on the seasonal term under which the corresponding volatility factor is well-defined are given, and five different specifications of the seasonality pattern are proposed. We calculate the joint characteristic function of two futures prices for different maturities in the risk-neutral measure. The model is then presented under the physical measure, and its state-space representation is derived, in order to estimate the parameters with the Kalman filter for time series of corn, cotton, soybean, sugar and wheat futures from 2007 to 2017. The seasonal model significantly outperforms the nested non-seasonal model in all five markets, and we show which seasonality patterns are particularly well-suited in each case. We also confirm the importance of correctly modelling the Samuelson effect in order to account for futures with different maturities. Our results are clearly confirmed in a robustness check carried out with an alternative dataset of constant maturity futures for the same agricultural markets.
---
中文摘要:
我们引入了一个包含季节性和萨缪尔森效应的商品多因素随机波动模型。给出了定义相应波动因子的季节性条件,并提出了五种不同的季节性模式规范。在风险中性测度中,我们计算了不同到期日的两种期货价格的联合特征函数。然后在物理量测下提出模型,并推导其状态空间表示,以便使用卡尔曼滤波器估计2007-2017年玉米、棉花、大豆、糖和小麦期货时间序列的参数。在所有五个市场中,季节性模型的表现都显著优于嵌套非季节性模型,并且我们展示了哪种季节性模式特别适合于每种情况。我们还确认了正确建模萨缪尔森效应的重要性,以解释不同到期日的期货。我们的结果在对相同农产品市场的固定期限期货替代数据集进行的稳健性检查中得到了明确证实。
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Pricing of Securities        证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--

---
PDF下载:
-->
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:萨缪尔森 萨缪尔 缪尔森 季节性 Agricultural

沙发
kedemingshi 在职认证  发表于 2022-6-9 17:21:45
季节性随机波动和萨缪尔森效应对农业期货市场的影响*Lorenz Schneider+Bertrand Tavin2018年11月27日摘要我们为商品引入了一个多因素随机波动率模型,该模型结合了季节性和萨缪尔森效应。给出了确定相应波动率因子的季节性条件,并提出了五种不同的季节性模式。我们在风险中性度量中计算了不同到期日的两种期货价格的联合特征函数。然后在物理量下给出模型,并导出其状态空间表示,以便使用卡尔曼滤波器估计2007年至2017年玉米、棉花、大豆、糖和小麦期货时间序列的参数。在所有五个市场中,季节性模型显著优于嵌套的非季节性模型,并且我们展示了哪种季节性模式特别适合每种情况。我们还确认了正确建模萨缪尔森效应的重要性,以便考虑不同到期日的期货。我们的结果在使用相同农业市场的恒定成熟度期货替代数据集进行的稳健性检查中得到了明确证实。关键词:农产品·季节性商品·季节波动性·随机波动性·萨缪尔森效应·时间序列估计·卡尔曼滤波器JEL:C63·C51·C52·G131简介季节性是许多商品市场众所周知的经验特征。在能源部门,在化石燃料、天然气期货曲线和精炼产品中,ga soline、取暖油和燃油期货曲线通常都显示出季节性。

藤椅
何人来此 在职认证  发表于 2022-6-9 17:21:48
在农业部门,几乎所有期货曲线都显示出季节性,这是由于收获时间和一年中的季节。*我们要感谢Carol Alexander、Roy Cerqueti、David Criens、Ennio Fedrizzi、Rene Flacke、Yevhen Havrylenko、Kristofer J¨urgensen、R¨udiger Kiesel、Fran,cois Le Grand、Cassio Neri以及2017慕尼黑大学保险、风险和资产管理创新大会、南特2018商品市场冬季研讨会、迪斯堡-埃森能源和金融研讨会的与会者,法国金融协会第35届年会在巴黎举行,商品和能源市场协会2018年年会在罗马拉萨皮恩扎举行,旨在提供有益和激励性的意见、讨论和建议。本文的一部分是在洛伦兹·施耐德(LorenzSchneider)担任麻省理工大学KPMG客座教授期间撰写的。本文的第一个版本最初于2015年6月发布,标题为“季节性随机波动性和相关性以及商品未来市场中的萨缪尔森效应”埃姆里昂商学院,schneider@em-里昂。com.埃姆里昂商学院,tavin@em-里昂。通用域名格式。从一开始就必须区分两种季节性:期货价格的季节性和期货价格波动的季节性。关于价格的季节性,考虑一下玉米、大豆和小麦等农产品。这些作物往往在收获前几个月供应量较低,而在夏季收获后供应量较高。这通常会导致交割月份在晚春的期货合约价格相对较高,交割月份在夏季或初秋的期货合约价格较低。因此,当这些合同的价格作为其到期日的函数绘制时,它们往往会以某种季节性的方式随着到期日而波动和下跌。

板凳
kedemingshi 在职认证  发表于 2022-6-9 17:21:52
换句话说,期货曲线显示出季节性。然而,具有特定到期日的单个期货合约的价格不应以任何季节性的方式随时间而涨跌:事实上,这种行为会导致容易的暴利机会。关于波动性的季节性,情况有所不同,因为根据季节性模式,具有固定到期日的单个未来合同往往会经历相对高或低波动的阶段。再次以农产品为例,收获前一个月的价格对农产品的质量和数量有直接影响,而期货价格会随着对新作物变化的预测而产生强烈的影响。与此相反,冬季的天气模式对收成的影响较小,期货价格的波动也不太强烈。根据这些经验观察,对于商品模型,季节性通常只是波动性的问题,而不是期货价格本身的问题。从数学上讲,在风险中性度量中,单个期货价格被建模为鞅,鞅没有以预先确定的方式上升或下降的趋势。Clark(2014)和Roncoro ni et al.(2015)对各种商品市场的季节性进行了一般性讨论,并列举了许多例子。传统上,有两种建模期货合约价格的方法:基于期货的模型和基于现货的模型。基于期货的模型的一个优点是,由于期货价格曲线是模型的输入,因此初始期货曲线的任何无套利形状都可以是通用的,包括任何类型的季节性。

报纸
nandehutu2022 在职认证  发表于 2022-6-9 17:21:55
相比之下,基于spo t的模型的第一步是使其符合初始期货曲线,这会耗尽模型参数,不一定会产生令人满意的结果。Sorensen(2002)研究了玉米、大豆和小麦期货市场的季节性建模。对1972年至1997年CBOT期货价格数据的大型数据集的分析清楚地证实,期货价格具有季节性。数据显示的另一个特征是期货价格波动的季节性行为。在这方面,Richter a and Sorensen(2002)提出了一个基于季节性随机波动的大豆现货价格模型。Geman和Nguyen(2005)还介绍了基于aspot的大豆价格模型,该模型在价格水平和(可能是随机的)波动水平上都具有季节性。Back等人(2013年)分析了玉米、大豆、取暖油和天然气市场的数据,并将各种基于现货的模型与确定性季节波动进行了比较。他们得出结论,在这些市场中,对期货期权进行估值时,具有季节性的波动性是一个重要特征。Arismendi et al.(2016)还研究了一个基于期货的季节性随机波动率模型,该模型基于Hesto n(1993)的随机波动率模型,该模型在平方根过程中具有确定性、季节性均值反转水平,然后是方差。Schmitz等人(2013年)根据两个潜在未来合同的联合Heston模型,研究市场中农业gra的日历展期期权。这两份合同共享相同的方差过程,具有恒定的均值反转水平,因此不显示季节性。在利率方面,Cox等人。

地板
何人来此 在职认证  发表于 2022-6-9 17:21:59
Maghso odi(1996)将(1985)(CIR)模型扩展为时间相关参数,Benhamou等人(2010)研究了具有时间相关参数的Heston(1993)模型,包括spo t价格与其方差之间的相关性。我们还要注意,在电力市场的背景下,Lucia和Schwartz(2002)对季节性函数的选择进行了详细的论证,asdo Geman和Roncoroni(2006)。与他关于期货价格季节性的评论类似,Sorensen(2002)证实了Samuelson(1965)的假设,即“非恒定到期期货的变化低于附近的期货价格S”。我们称这种模式为Samuelson效应。克莱洛和斯特里克兰(1999a,b)的基于期货的流行模型结合了这一效应。这些模型中使用的波动率函数具有再确定性。Schneider和Tavin(2018)扩展了C le w low和Strickland(1999b)的多因素模型,以纳入随机波动性。随机波动率不仅是期货市场价格的一个无法证明的经验特征,它的加入还允许校准模式l,以确定期货期权市场中典型的期权波动率和偏斜。在农业市场中,对随机波动性的一种反映是2011年和2012年在CBOE/CBO T上引入了三个波动性指数:协变量波动性指数(CIV)、大豆波动性指数(SIV)和小麦波动性指数(WIV)。在本文中,我们扩展了Schneider和Tav(2018)中引入的模型,将季节趋势纳入随机方差过程。为了实现这一点,我们从第2部分开始,研究施加在sea sonality函数上的数学条件,以确保Cox等人的基因ralizedCox Ingersoll-Ross(CIR)过程。

7
可人4 在职认证  发表于 2022-6-9 17:22:02
(1985)保留了重要的特征,如强解的存在性和唯一性,以及正性。这些条件不仅从理论角度来看很有趣,而且在实践中也很有用:不同的市场可能需要用不同的波动率季节性模式来建模,因此我们提出了五种季节性模式。然后,我们在第3节中介绍了风险中性度量中具有波动性的模型,并展示了如何通过扩展Schneider和Tavin(2018)的结果,获得两种期货价格对数回归的联合特征函数(c.f.)。结果表明,第一个函数A的Riccati o rdinarydi微分方程(ODE)不受影响,只有第二个函数B的积分ODE取决于依赖于时间的、确定性的平均回归水平,并且发生了改变。因此,可以使用与Schneider和Tavin(2018)c中相同的封闭式解决方案。有了联合c.f.,欧洲期权和cale-ndar期货价差期权可以轻松快速地定价。最后,我们介绍了风险的市场价格,并提出了物理度量模型。在第4节中,我们给出了模型的状态空间表示,以便与卡尔曼滤波器一起使用。当观察到的时间序列是期货价格或回报时,该模型是有条件高斯模型,并符合经典的卡尔曼滤波器设置,并且很容易对给定模型参数集的对数似然函数进行评估。在第5节中,我们提供了玉米、棉花、大豆、糖和小麦期货合约的数据。由于我们的重点也是萨缪尔森效应,因此我们在样本中包括了所有可用的流动性到期日,从附近的合同到最后一份合同大约需要两年的时间。

8
可人4 在职认证  发表于 2022-6-9 17:22:09
然后,我们估计了这些农业市场中我们模型的五个季节性版本和非季节性版本。我们发现,在所有五个市场中,季节性模型的表现都明显优于嵌套的非季节性模型,并显示了哪些季节性模式特别适合于各个市场。此外,我们的结果清楚地证明了正确建模萨默尔森效应以解释不同到期日的期货的重要性。为了检验我们结果的稳健性,我们进行了第二次参数估计,该估计基于从相同期货数据计算出的恒定到期日回报序列。Galai(1979)提出了这种方法来构建看涨期权指数,Alexander和Korovilas(2013)提出了VIX期货。使用该替代数据集获得的结果清楚地证明,我们的估计对于我们使用的时间序列类型(串联或恒定)是稳健的。第6节的结论是,附录A、B和C包含证明和辅助结果,附录D包含恒定期限期货系列的估计结果。2季节性随机波动2.1据我们所知,Hull和White(1990)首次考虑将Cox等人(1985)(CIR)利率模型扩展到时间相关系数。他们得出结论,在这种一般情况下,再也不可能通过分析获得欧洲债券期权价格。Maghsoodi(1996)还研究了参数κ、θ和σ随时间变化的“扩展”CIR过程,并在特定条件下找到了描述过程演化的SDE的唯一强解。在赫斯顿(1993)随机波动率模型中,CIR过程表示股票价格或外汇汇率的方差过程。Benhamou等人。

9
何人来此 在职认证  发表于 2022-6-9 17:22:13
(2010)研究“时间依赖性股票模型”,并推导出近似于欧洲期权价格s的分析公式。在他们的设置中,平均回归参数κ是常数,但参数θ、σ和ρ(给出股票价格或外汇汇率与其方差之间的相关性)都允许随时间t变化。在这里介绍的模型中,我们只让θ给出的平均回复水平依赖于时间,而其他参数κ>0和σ>0(以及随后的ρ)保持不变。让(Ohm, A、 P,F)是一个过滤概率空间,设B=(Bt)t≥0是这个空间上的布朗运动。设T={ti,i=1,…}是一组时间,在每个有界区间内只有无穷多个点,且Z={0≤ t<t<…<ti<…}是T定义的R+的分区。最后,让季节性函数θ:R+→ R+相对于Z是分段连续的,并且假设它由正常数θminandθmax从下到上限定。我们将比较两个过程v(季节性)和v(非季节性),这两个过程分别由SDEsdv(t)=κ(θ(t)给出- v(t))dt+σpv(t)dB(t),(1)dv(t)=κ(θmin- v(t))dt+σpv(t)dB(t),(2)具有相同的参数κ>0,σ>0和初始条件0<v(0)=v≤ v(0)=v。众所周知,(2)有一个独特的强解。以下结果描述了(1)的解决方案。命题2.1假设季节性函数θ是分段连续的w.r.t.划分Zof r+,并以正常数θminandθmax为界,即对于所有t≥ 0,0<θmin≤ θ(t)≤ θmax。让过程v和∧v分别由(1)和(2)给出。然后:(i)。过程(1)有一个具有连续样本路径的唯一强解。(二)。P【】vt≤ 及物动词,t型≥ 0 ] = 1.(iii)。

10
何人来此 在职认证  发表于 2022-6-9 17:22:16
如果θmin满足Feller条件σ<2κθ,则过程v严格为正。我们在附录A中证明了这一结果。请注意,如果Feller条件被破坏,则v可能达到0,但它仍然不能为负。θ上的分段连续性条件意味着均值回复水平的不连续规范不构成pr问题。2.2季节性函数呈现五种类型的季节性函数θ,可用作参数形式来模拟波动性的季节性变化。这些函数是参数化的,与参数a、b和t一起工作。参数a决定基本波动水平,b决定季节性模式的强度,以及一年中波动达到最大值的时间。由于支持波动性季节性现象的原因可能因市场而异,因此不同的季节性模式将允许更大的灵活性来适应给定的期货市场。下面考虑的前两种模式是平滑的,基于正弦函数。其他三个切点具有不可区分性或不连续性,可用于表示波动性的较不规则演变。(i) 。给出了正弦模式,其中≥ b>0和t∈ [0,1[,乘以θ(t)=a+b cos(2π(t- t) )。(3) (二)。给出了经验正弦图,其中a,b>0,t∈ [0,1[,乘以θ(t)=aeb cos(2π(t-t) )。(4) Arismendi等人(2016)使用了θ的参数形式。(iii)。给出了锯齿图案,其中a、b>0和t∈ [0,1[,乘以θ(t)=a+b(t- t型- t型- t型) , (5) 在哪里. 表示FLOOR函数。(四)。给出了三角形图案,其中a、b>0和t∈ [0,1[,乘以θ(t)=a+b- (t- t型- t型- t型). (6) (五)。给出了尖峰图案,其中a、b>0和t∈ [0,1[,乘以θ(t)=a+b1+| sin(π(t- t) ()|- 1..

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-3 12:24