楼主: 大多数88
846 19

[量化金融] 比特币市场极端价格波动的标度特性 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
70.8997
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-6-9 20:29:25 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文标题:
《Scaling properties of extreme price fluctuations in Bitcoin markets》
---
作者:
Stjepan Begu\\v{s}i\\\'c, Zvonko Kostanj\\v{c}ar, H. Eugene Stanley, and
  Boris Podobnik
---
最新提交年份:
2018
---
英文摘要:
  Detection of power-law behavior and studies of scaling exponents uncover the characteristics of complexity in many real world phenomena. The complexity of financial markets has always presented challenging issues and provided interesting findings, such as the inverse cubic law in the tails of stock price fluctuation distributions. Motivated by the rise of novel digital assets based on blockchain technology, we study the distributions of cryptocurrency price fluctuations. We consider Bitcoin returns over various time intervals and from multiple digital exchanges, in order to investigate the existence of universal scaling behavior in the tails, and ascertain whether the scaling exponent supports the presence of a finite second moment. We provide empirical evidence on slowly decaying tails in the distributions of returns over multiple time intervals and different exchanges, corresponding to a power-law. We estimate the scaling exponent and find an asymptotic power-law behavior with 2 < {\\alpha} < 2.5 suggesting that Bitcoin returns, in addition to being more volatile, also exhibit heavier tails than stocks, which are known to be around 3. Our results also imply the existence of a finite second moment, thus providing a fundamental basis for the usage of standard financial theories and covariance-based techniques in risk management and portfolio optimization scenarios.
---
中文摘要:
幂律行为的检测和标度指数的研究揭示了许多现实世界现象的复杂性特征。金融市场的复杂性一直是一个具有挑战性的问题,并提供了有趣的发现,例如股票价格波动分布尾部的逆三次定律。基于区块链技术的新型数字资产的兴起,我们研究了加密货币价格波动的分布。我们考虑比特币在不同时间间隔和多个数字交换中的收益,以研究尾部是否存在普遍的缩放行为,并确定缩放指数是否支持有限秒矩的存在。我们提供了经验证据,证明收益率在多个时间间隔和不同交易所的分布呈缓慢衰减的尾部,对应于幂律。我们估计了标度指数,并发现2<{\\alpha}<2.5的渐近幂律行为,这表明比特币收益率除了更具波动性外,还表现出比股票更重的尾部,已知尾部约为3。我们的结果还暗示了有限二阶矩的存在,从而为在风险管理和投资组合优化场景中使用标准金融理论和基于协方差的技术提供了基本依据。
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--

---
PDF下载:
--> Scaling_properties_of_extreme_price_fluctuations_in_Bitcoin_markets.pdf (887.33 KB)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:价格波动 比特币 distribution Fluctuations Optimization

沙发
nandehutu2022 在职认证  发表于 2022-6-9 20:29:31
比特币市场极端价格波动的标度特性萨格勒布大学电气工程与计算学院金融与风险分析实验室,萨格勒布大学,萨格勒布10000,马萨诸塞州波士顿大学克罗地亚聚合物研究中心和物理系,波士顿大学,波士顿,邮编02215,里杰卡大学土木工程学院,51000里杰卡,克罗地亚萨格勒布经济与管理学院,10000萨格勒布,卢森堡大公国卢森堡克罗地亚卢森堡商学院。幂律行为检测和缩放指数研究揭示了许多实际现象的复杂性特征。金融市场的复杂性一直是一个具有挑战性的问题,并提供了有趣的发现,例如股价波动分布尾部的逆三次定律。基于区块链技术的新型数字资产的兴起,我们研究了加密货币价格波动的分布。我们考虑比特币在不同时间间隔和多个数字交换中的回报,以调查尾部是否存在普遍的缩放行为,并确定缩放指数是否支持存在有限的秒矩。我们提供了经验证据,证明收益率在多个时间间隔和不同交易所的分布呈缓慢衰减的尾部,对应于幂律。我们估计2<α<2.5时的标度指数和f n渐近幂律行为,这表明比特币收益率除了更具波动性外,还表现出比股票更重的尾部,已知尾部约为3。

藤椅
何人来此 在职认证  发表于 2022-6-9 20:29:34
我们的结果还证明了有限秒矩的存在,从而为在风险管理和投资组合优化场景中使用标准财务理论和基于协方差的技术提供了基本依据。关键词:金融市场、加密货币、比特币、幂律、缩放1。引言已知许多生态、社会、技术或经济系统的动力学表现出尾部幂律衰减的分布【1,2】,这通常是动力系统复杂性和自组织临界性的一个症状。一个突出的例子是金融市场,对于金融市场而言,股价波动的倒数立方爪是一个公认的事实[3、4、5]。该发现表明,极端价格变化在不同时间间隔内的经验累积分布,从高频到每日,以指数α’3衰减,作为一个普遍的标度律[6、7、8]。这也意味着价格变化存在一个有限的第二时刻,这对风险管理和组合优化有直接影响,其中主要使用基于协方差的方法。人们认为,价格波动中幂律行为的出现是潜在复杂机制的结果,如金融市场中的反馈效应和相关性[6、7、9、10]。

板凳
大多数88 在职认证  发表于 2022-6-9 20:29:37
一些理论将这种现象与市场影响和大投资者的分布联系起来[4,5],而其他研究则将幂律行为建模为投资者对公司真实价值和有限信息的错误估计的结果[11]。虽然有各种模型可以生成股票价格的适当统计特性[12],但尚未对各种金融市场中所报告的价格波动的普遍标度行为进行全面研究[13、14、15]。*通讯作者:Stjepan Beguˇsi'c(Stjepan。begusic@fer.hr).2018年3月23日提交给爱思唯尔的预印本区块链技术的广泛采用以及加密货币作为一种新型资产类别的出现,导致了在线加密货币交易所的发展,主要是全天候向全球投资者开放。在本文中,我们关注比特币[16],这是市值最大的加密货币,也是作为数字资产历史最悠久的加密货币。近年来,我们目睹了歇斯底里和恐慌在2010年到今天的几次比特币泡沫和崩盘中的具体化——这在股票、货币或大宗商品市场中并不常见。了解加密货币价格波动的分布特性是迈向加密货币市场适当投资方法的必要步骤【17,18】。Osterrieder和Lorenz【19】最近利用每日加密货币价格数据对极端尾部行为进行了统计分析,发现比特币回报率的波动率比大型货币高出数倍,但正如已确定的广义帕累托分布和极值分布所示,尾部更重。

报纸
何人来此 在职认证  发表于 2022-6-9 20:29:41
其他研究工作集中于建模和解释区块链和投资者网络中潜在复杂的投资者和用户系统产生的相关现象【20,21】。在线数字和社交网络中的信息模式与比特币的价格表现相关,并与比特币市场表现表现出反馈关系[22,23]。通过识别比特币泡沫和崩溃的经济计量证据,这一研究路线得以推进,这意味着比特币早期使用者的投机性【24】。Donier和Bouchaud【25】发现,比特币交易所的市场微观结构可以用来预测市场中的流动性不足问题,从而导致突然崩溃。进一步的研究侧重于确定市场上比特币价格的主要驱动因素,发现价格主要由内生基本面因素驱动【26,27】。尽管对cryptocurrencyreturns的许多统计特征进行了分析[28,29],但没有关于disitrbutiontails的标度特性或普遍行为存在的证据。本文详细研究了经验比特币收益率分布中的重尾特性。我们检查了极值处的累积分布,并发现多重时间间隔和不同交换的幂律衰减。由于幂律指数很难估计,我们采用了两种估计方法和一种基于重采样的技术来统计验证观测分布尾中的幂律假设。我们还检查比特币交易所流动性随时间的演变是否对标度指数产生了影响。

地板
mingdashike22 在职认证  发表于 2022-6-9 20:29:44
我们发现,指数α似乎位于2<α<2.5的范围内,这与股票的逆三次定律(α’3)不一致[6、7、8],这意味着除了更大的市场波动性[18],比特币回报率也比股票表现出更大的尾部[3]。然而,发现指数不在利维稳定区域0<α<2这一事实意味着存在一个有限的二阶矩(即方差),这是风险估计方法和技术的关键基础,最终也是将DebitCoin作为投资的投资组合优化方案的关键基础。2、数据我们分析了五家大型比特币交易所(Mt.Gox、BTC-e、Bitstamp、Bit-nex和Kraken)的比特币/美元对的交易级数据。这些数字交换平台在不同的时间段都很活跃——数据的可用性如表1所示。每个数据点包括交易价格(以美国表示的比特币价格)和交易数量。交易期编号2013年3月至2016年12月10182187比特邮票2011年9月至2018年2月21353815BTC-e 2011年8月至2017年7月32904778Kraken 2014年1月至2018年2月7635562MT。Gox 2010年7月至2014年2月8295806表1:所考虑的比特币交换数据摘要。2011 2012 2013 2014 2015 2016 2017 2018时间100101102103104105106每日交易量bittfinexistampbtc eKrakenMt。GOX图1:在整个分析期间,所考虑的比特币交易所的每日交易数量(透明线)及其30天移动平均数(实线),以对数刻度显示。

7
大多数88 在职认证  发表于 2022-6-9 20:29:47
中断期间对应于数据集中的缺失数据。虽然与对几十年的股票数据进行的分析相比,考虑的7年时间段并不特别长[6、7、8](这对于估计发行日特别重要),但使用多个交易所的数据这一事实为我们的分析引入了额外的维度。首先,不同的交易所在不同的时间段内运作,可以通过尽可能大的时间段来研究比特币价格波动分布尺度特性的持续性。此外,交易所有不同的用户基础,这意味着尽管我们只考虑BTC/美元对,但流动性不足的各种影响可能意味着个别交易所的价格波动分布不同。如图1所示,比特币交易活动在所考虑的时间段内经历了巨大的转变,从2013年的繁荣和随后的停滞,到2017年交易活动和交易所数量的近期扩张。除了交易数量的明显变化外,我们还报告了交易量的类似行为。值得注意的是,比特币交易生态系统也遭遇了一些困境,例如2014年2月发生的Mt.Gox盗窃案及其清算,以及2017年美国司法部因涉嫌洗钱和Mt.Gox黑客行为而扣押BTC-e。利用交易层面的数据(总计8000多万笔交易),我们计算了不同固定时间间隔的价格波动,从t=1分钟至t=1天。时间t的价格Ptat计算为t之前期间的最后交易价格- t到t。使用等距价格时间序列,我们将对数回报计算为价格对数的变化:Rt=log Pt- 对数Pt-t。

8
可人4 在职认证  发表于 2022-6-9 20:29:50
(1) 在我们的分析中,通过减去平均值并除以标准差:Rnorm,对每个考虑的交易所和时间间隔的回报进行标准化(以测量其值与平均值之间的标准差数量)。t=Rt- uRσR,(2)其中uRandσR记录所考虑交易所回报的平均值和标准偏差。使用标准化回报的另一个优势是能够在不同的时间间隔和交易所之间相互比较估计的经验分布。3、价格波动分布中尾部指数的估计金融资产收益的一个众所周知的特性是逆三次定律,这意味着其累积分布的尾部遵循幂律:P(X>X)~ x个-α、 (3)其中标度指数为α\'3(相应的概率密度函数随α+1\'4衰减)。这一特征指数可以在许多不同金融市场的数据中找到,包括发达市场的个股【8】、市场指数【7】以及发展中市场【30】。反三次定律在以下时间尺度上被发现t=1分钟至t=1天证明了这种缩放行为的普遍性。识别和量化此类分布的尾部属性通常不是一项简单的任务。具体而言,要估计幂律指数α,首先需要确定下限xmin,这从本质上隔离了被认为属于分布尾部的数据。然后,可以使用多种技术从尾部数据中推断指数,其中最常用的是对数-对数尺度的回归函数和Hill估计器[31]。

9
大多数88 在职认证  发表于 2022-6-9 20:29:53
长期以来,在对数-对数标度上绘制尾部分布一直是目视检查幂律行为的常用方法,因此,线性回归可以作为估计标度指数的自然选择。另一方面,假设尾部数据遵循幂律[2],则Hill估计量是最大似然估计量,读数为:^α=nnXi=1logxixmin!,(4) 其中,n是用于估计幂律指数的数据点数。已知该估计量在大量数据点n的限制下渐近正态且一致,估计量的标准误差^α可计算为:σ=^α/√n、 在本文中,我们使用上述两种方法分析比特币收益率分布尾部的幂律指数,以进一步验证我们的结果。为了估算临界点Xmin,我们采用了Clauset等人提出的方法。[2] ,这取决于Kolmogorov-Smirnov(KS)统计数据,作为经验cdf Q(x)和确定cdf P(x)之间距离的度量:D=maxx | P(x)- Q(x)|,(5),本质上等于两个概率函数之间的最大距离。选择的切割点Xmini是使区域x的KS统计最小化的切割点≥ xmin。在实践中,很容易拟合幂律分布,并从不一定符合幂律分布的数据中获得指数估计值。为了验证我们数据中的幂律假设,我们采用了Preis等人提出的基于重采样的方法。首先,从分布尾部的n个数据点估计幂律指数^α(使用任何选择的方法),并使用ks统计量Demp。为此,计算了幂律分布。

10
大多数88 在职认证  发表于 2022-6-9 20:29:57
然后,生成大量N个综合数据集,所有这些数据集都包含从幂律分布中抽取的N个点,其指数为^α。对于每个合成数据集,估计标度指数(使用相同的方法)和相应的KS统计数据Dj,j=1。。。,计算N。如果经验数据与幂律的偏差不一致。大于合成数据集Dj偏差的很大一部分,幂律可能不是经验分布的合理解释。具体而言,综合KS统计数据的分位数dj大于经验数据Demp。是零假设的p值,即经验数据来自幂律分布。因此,如果p值很小,经验数据的偏差不能单独归因于随机效应,幂律假设被拒绝。在我们的分析中,我们使用N=1000个生成的合成数据集和95%的置信水平来检验所考虑数据中的幂律假设。4、结果由于我们的数据表明交易所之间的交易活动有所不同,并且随着时间的推移而演变,我们探讨了两个问题:(i)比特币收益的标度特性是否随着时间的推移而演变,以及(ii)所考虑的交易所的市场流动性差异是否会影响这些特性?为了测试这些,我们考虑从2010年8月到2018年2月,t=5分钟返回数据,并将数据分为t=15个连续、不重叠的6个月周期。对于其中的每一个,我们使用Hill估计器从所有交易所的收益中估计标度指数。然后,我们得出以下形式的线性回归:αt=β+βt,其中t=1。。。,T表示6个月期间,^α是该期间的估计指数。

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-6 15:03