英文标题:
《Minimax theorem and Nash equilibrium of symmetric multi-players zero-sum
game with two strategic variables》
---
作者:
Masahiko Hattori, Atsuhiro Satoh and Yasuhito Tanaka
---
最新提交年份:
2018
---
英文摘要:
We consider a symmetric multi-players zero-sum game with two strategic variables. There are $n$ players, $n\\geq 3$. Each player is denoted by $i$. Two strategic variables are $t_i$ and $s_i$, $i\\in \\{1, \\dots, n\\}$. They are related by invertible functions. Using the minimax theorem by \\cite{sion} we will show that Nash equilibria in the following states are equivalent. 1. All players choose $t_i,\\ i\\in \\{1, \\dots, n\\}$, (as their strategic variables). 2. Some players choose $t_i$\'s and the other players choose $s_i$\'s. 3. All players choose $s_i,\\ i\\in \\{1, \\dots, n\\}$.
---
中文摘要:
我们考虑一个具有两个策略变量的对称多人零和对策。有$n$玩家,$n\\geq 3$。每个玩家由$i$表示。两个战略变量是$t\\U i$和$s\\U i$,$i\\ in \\{1,\\dots,n \\}$。它们通过可逆函数联系在一起。利用极大极小定理,我们将证明下列状态下的纳什均衡是等价的。1、所有玩家选择$t\\U i、\\i\\in \\{1、\\dots、n \\}$,(作为他们的战略变量)。2、一些玩家选择$t\\U i$\'s,其他玩家选择$s\\U i$\'s。3。所有玩家选择$s\\U i、\\ i \\ in \\{1、\\ dots、n \\}$。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







