《Optimal stopping via reinforced regression》
---
作者:
Denis Belomestny, John Schoenmakers, Vladimir Spokoiny and Bakhyt
Zharkynbay
---
最新提交年份:
2019
---
英文摘要:
In this note we propose a new approach towards solving numerically optimal stopping problems via reinforced regression based Monte Carlo algorithms. The main idea of the method is to reinforce standard linear regression algorithms in each backward induction step by adding new basis functions based on previously estimated continuation values. The proposed methodology is illustrated by a numerical example from mathematical finance.
---
中文摘要:
在本文中,我们提出了一种通过基于强化回归的蒙特卡罗算法来解决数值最优停止问题的新方法。该方法的主要思想是,通过基于先前估计的连续值添加新的基函数,在每个反向归纳步骤中加强标准线性回归算法。数学金融学的一个数值例子说明了所提出的方法。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Numerical Analysis 数值分析
分类描述:Numerical algorithms for problems in analysis and algebra, scientific computation
分析和代数问题的数值算法,科学计算
--
一级分类:Computer Science 计算机科学
二级分类:Numerical Analysis 数值分析
分类描述:cs.NA is an alias for math.NA. Roughly includes material in ACM Subject Class G.1.
cs.na是Math.na的别名。大致包括ACM学科类G.1的材料。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->
Optimal_stopping_via_reinforced_regression.pdf
(188.6 KB)


雷达卡



京公网安备 11010802022788号







